Purpose: Erectile dysfunction (ED) frequently arises as a complication of pelvic surgeries, including rectal and prostate surgery, and has no definitive cure. This study explored whether mitochondria-rich microvesicles (MVs) can be used to treat ED stemming from cavernous nerve injury (CNI) and investigated its potential mechanisms.
Methods: We isolated MVs and mitochondria (MT) from PC12.
Background: Neurogenic erectile dysfunction, characterized by neurological repair disorders and progressive corpus cavernosum fibrosis (CCF), is an unbearable disease with limited treatment success. IL-17A exhibits a complex role in tissue remodelling. Nevertheless, the precise role and underlying mechanisms of IL-17A in CCF under denervation remain unclear.
View Article and Find Full Text PDFErectile dysfunction (ED) caused by cavernous nerve injury (CNI) is refractory to heal mainly ascribed to the adverse remodeling of the penis induced by ineffectual microvascular perfusion, fibrosis, and neurotrophins scarcity in cavernosum. Phosphodiesterase type V inhibitors (PDE5i) have been regarded as an alternative candidate drug for avoiding penile neuropathy. However, the therapeutic efficacy is severely limited due to poor accumulation under systemic medication and endogenous nitric oxide (NO) deficiency in cavernosum.
View Article and Find Full Text PDFPurpose: Erectile dysfunction (ED) is a common postoperative complication of pelvic surgery for which there is currently no effective treatment. This study investigated the therapeutic effects and potential mechanisms of adipose derived mesenchymal stem cells-derived mitochondria (ADSCs-mito) transplantation in a rat model of bilateral cavernous nerve injury (CNI) ED.
Materials And Methods: We isolated mitochondria from ADSCs and tested their quality.
Neurogenic erectile dysfunction (NED) is a common and serious complication after pelvic surgery. The clinical translation of adipose-derived mesenchymal stem cell (ADSC) therapies in NED remains a major challenge due to their low survival rate and limited therapeutic effect. Peroxiredoxin 2 (PRDX2) is a member of the peroxidase family that exerts its therapeutic effects by inhibiting oxidative stress (OS) and ferroptosis, and PRDX2 is expected to enhance the therapeutic effect of ADSCs in treating NED.
View Article and Find Full Text PDFNeurogenic erectile dysfunction (nED) is one of the most common and intractable postoperative complications of rectal and prostate cancer surgery and sometimes accompanies patients lifelong. The transplantation of stem cells has been proved a promising way for treatment. However, the therapeutic efficacy is severely impaired by excessive cell loss and death and poor accumulation in the injury site along with the traditional implantation strategy.
View Article and Find Full Text PDFBackground: Erectile dysfunction (ED) often occurs due to cavernous nerve injury (CNI) after colorectal surgery. Cell-based therapies have great potential for the treatment of CNI-related ED; however, it needs to be optimised. In this study, we explored the therapeutic effects of lipopolysaccharide-preconditioned allogeneic adipose-derived stem cells (L-ADSCs) on CNI-induced ED in rats.
View Article and Find Full Text PDFCavernous nerve injury (CNI) is the main cause of erectile dysfunction (ED) following pelvic surgery. Our previous studies have demonstrated that transplantation of different sources of mesenchymal stem cells (MSCs) was able to alleviate ED induced by CNI in rat models. However, little is known about the therapeutic effects of human gingiva-derived MSCs (hGMSCs) in CNI ED rats.
View Article and Find Full Text PDFBlood vessels in tumors often exhibit abnormal morphology and function, which promotes the growth, metastasis and resistance of tumors to conventional therapies. Therefore, vascular normalization is an emerging strategy to enhance the effectiveness of radiotherapy and chemotherapy when used in combination; however, there is a lack of evidence regarding the optimal schedule for the co-administration of anti-angiogenic and chemotherapeutic drugs. Scheduling treatment is important as the period for normalization is transient, also known as the 'time window'; however, no biomarker has been identified to detect this window.
View Article and Find Full Text PDFObjectives: To evaluate the rapid repair potential of adipose-derived stem cells (ADSCs) co-overexpressing VEGF and GDNF on bilateral cavernous nerve injury (BCNI) in rat models. Progressive fibrosis of the penis that occurs shortly after BCNI is a key cause of clinical treatment difficulty of erectile dysfunction (ED). Traditional medications are ineffective for ED caused by BCNI.
View Article and Find Full Text PDFBackground: Tumor vessels were persistently compressed by solid stress from tumor interstitial matrix, resulting in limited vessel perfusion and oxygen concentrations. Collagen within matrix participated in transmitting the solid stress to tumor vessels and limiting drug delivery.
Purpose: The objective of this study was to identify whether gold nanoparticles (AuNPs) were able to decompress colorectal cancer vessels and enhance vessel perfusion as well as drug delivery in colorectal cancer.
Anti-angiogenic therapy provides transient tumor vascular normalization, which results in a window of opportunity for improvement of radio- or chemotherapy. Biomarkers indicating this window are required for rationalizing anti-angiogenesis. Anterior gradient 2 (AGR2), the majority of which is secreted from tumor cells, is an easily detected plasma protein.
View Article and Find Full Text PDFSeveral studies have revealed the potential of normalizing tumor vessels in anti-angiogenic treatment. Recombinant human endostatin is an anti-angiogenic agent which has been applied in clinical tumor treatment. Our previous research indicated that gold nanoparticles could be a nanoparticle carrier for recombinant human endostatin delivery.
View Article and Find Full Text PDFAngiogenesis is a process by which vessels are formed through preexisting ones, and this plays a key role in the progression of solid tumors. However, tumor vessels are influenced by excessive pro-angiogenic factors, resulting in deformed structures that facilitate the intravasation of tumor cells into the circulation and subsequent metastasis. Moreover, abnormal tumor vessels have low blood perfusion and thereby decreased oxygen infusion into tumors.
View Article and Find Full Text PDFTumour vasculature is generally disordered because of the production of excessive angiogenic factors by tumour cells, which results in tumour progression and reduces the effectiveness of radiotherapy or chemotherapy. Transient anti-angiogenic therapies that regulate tumour vascular morphology and function and improve the efficiency of antitumour therapy are under investigation. Recombinant human endostatin (Endostar/rhES) is a vascular angiogenesis-disrupting agent that has been used to treat non-small cell lung cancer (NSCLC) in the clinical setting.
View Article and Find Full Text PDF