Introduction: It is a challenge to make accurate pre-surgical diagnosis for renal tumors. This study is to report the findings, management, and outcome of one rare case of ossification in a cystic renal mass. We present and discuss the pathological characteristics, radiologic features, and treatment alternatives of the patient.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
November 2013
The ground state absorption spectra of [NiF6](4-) clusters with orthorhombic symmetry (Ni(2+) in NiF2 crystal and Ni(2+)-doped ZnF2 crystal, D2h point group) are theoretically calculated and assigned by diagonalization of 45×45 complete energy matrix for 3d(8) configuration and the spin-Hamiltonian (SH) parameters (zero-field splitting D and E, and g factors gx, gy, gz) are studied by use of high-order perturbation method, in the frame of semi-empirical molecular orbital (MO) scheme based on strong crystal field framework. In those energy matrix, all the configuration interactions though the cubic crystal field (CF), the orthorhombic crystal field, the Coulomb interaction are taken into account. The calculated results are in good agreement with the experimental data.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2012
The complete energy matrices (45 × 45) including low symmetry ligand field (C(4v)) and Coulomb interactions for 3d(8) ions have been constructed, and the high-order perturbation formulas of spin-Hamiltonian (SH) parameters g factors g(//), g(⊥) and zero-field splitting (ZFS) parameter D for ground state (3)A(2g) of the 3d(8) ions in the tetragonal symmetry environment have been derived. In those formulas both the crystal field (CF) mechanism and the charge transfer (CT) mechanism are taken into account. The complete energy matrices and the high-order perturbation formulas are applied to calculate the energy levels and SH parameters of the Ni(2+) ion in LiCl crystal respectively.
View Article and Find Full Text PDF