The use of biochar to reduce the gas emissions from paddy soils is a promising approach. However, the manner in which biochar and soil microbial communities interact to affect CO, CH, and NO emissions is not clearly understood, particularly when compared with other amendments. In this study, high-throughput sequencing, soil metabolomics, and quantitative real-time PCR were utilized to compare the effects of biochar (BC) and organic manure (OM) on soil microbial community structure, metabolomic profiles and functional genes, and ultimately CO, CH, and NO emissions.
View Article and Find Full Text PDFObjective: The aim of the study was to systematically evaluate the therapeutic effect of nurse-led telepsychological intervention on patients with postpartum depression.
Methods: PubMed, Embase, CINAHL, Web of Science, the Cochrane Library, Chinese Biomedical Literature Database, China National Knowledge Infrastructure, Wanfang Database, and China VIP database were searched for articles on the effectiveness of remote psychological intervention in improving postpartum depression. The search time was limited from the establishment of the database to December 2023.
The consumption of cadmium (Cd), arsenic (As), and lead (Pb) co-contaminated rice exposes humans to multiple heavy metals simultaneously, with relative bioavailability (RBA) and bioaccessibility (BAc) being important determinants of potential health risks. This study evaluated the relationship between in vivo RBA and in vitro BAc of Cd, As, and Pb in rice and their cumulative risk to humans. A total of 110 rice samples were collected in Zhejiang Province, China, and 10 subsamples with varying concentration gradients were randomly selected to measure RBA using a mouse model (liver, kidney, femur, blood, and urine as endpoints) and BAc using four in vitro assays (PBET, UBM, SBRC, and IVG).
View Article and Find Full Text PDFBackground: Computed tomography angiography (CTA) is the recommended diagnostic and follow-up imaging modality for acute aortic dissection (AD). However, the high-contrast medium burden associated with repeated CT aortography follow-ups remains a significant concern. This prospective study aimed to assess whether an ultra-low contrast dose (75% cutoff) aortic CTA protocol on dual-layer spectral CT could achieve comparable image quality with the full dose protocol.
View Article and Find Full Text PDFAlthough Cd accumulation varies among rice varieties is recognized, the underlying mechanisms are not well clarified. In this study, comparative transcriptome analysis were performed by hydroponic culture system with two rice varieties, Y1540 (high Cd accumulator) and Y15 (low Cd accumulator) under 20 μM Cd stress. Results revealed 17,320 differentially expressed genes (DEGs) in roots of Y15 (7,655 upregulated and 9,665 downregulated) and 17,386 DEGs in roots of Y1540 (8,823 upregulated and 8,563 downregulated) expose to 20 μM Cd stress.
View Article and Find Full Text PDFTo date, Cd remains a major contaminant in rice production. An in-depth exploration of the mechanism that causes genotypic differences in Cd enrichment in rice is necessary to develop strategies to regulate Cd enrichment in rice. Here, two rice cultivars (low grain Cd, ZZ143; and high grain Cd, YX409) displayed different transcriptomic profile patterns when subjected to 100μmol/L Cd stress.
View Article and Find Full Text PDFRoot exudates released by plants can promote microbial growth and activity, thereby affecting the transformation and availability of soil pollutants. However, the effects of the root exudates of rice plants on chromium (Cr) transformation in paddy soils and the underlying mechanisms are yet to be elucidated properly. The present study investigated how rice root exudates interact with rhizosphere microorganisms to influence the transformation of Cr and explored the key components in root exudates that affect Cr(VI) reduction.
View Article and Find Full Text PDFDespite being an effective and attractive functional strategy for aqueous phosphorus (P) removal, the use of zero valent iron (ZVI) biochar composites has been severely impeded by rapid self-erosion. We describe a new approach for extending the lifespan of Fe-rich sludge-derived ZVI biochar composites via CaCl modification. Preliminary results showed that composites obtained at 900 °C without modification (MBC900) and at 900 °C with 100 g Cl/kg addition (MBC900) had the highest P removal efficiency.
View Article and Find Full Text PDFSoil acidification and heavy metal pollution are two common barrier factors threatening plant growth and agro-product quality. Applying manure compost is promising to alleviate soil acidity, while it may increase heavy metal accumulation in soil. In a 3-year field experiment, compost was applied for 12 consecutive harvest seasons at 15, 30, and 45 t ha in a slightly acidic soil.
View Article and Find Full Text PDFTo fulfill sustainability principles, a three-site field experiment was conducted to screen suitably mixed passivators from lime + biochar (L + C, 9000 kgha with a rate of 1:1) and lime + biochar + sepiolite (L + C + S, 9000 kg ha with a rate of 1:1:1), in Yuecheng (YC), Zhuji (ZJ), and Fuyang (FY), where there are typical contaminated soils, in South China. Treated with passivators in soil, DTPA-extractable Cd, Crand Pb in soil were decreased by 9.87-26.
View Article and Find Full Text PDFCombining biochar with irrigation management to alter the microbial community is a sustainable method for remediating soils contaminated by heavy metals. However, studies on how these treatments promote Cr(VI) reduction are limited, and the corresponding microbial mechanisms are unclear. Therefore, we conducted a pot experiment to explore the responses of soil microbial communities to combined biochar amendment and irrigation management strategies and their involvement in Cr transformation in paddy soils.
View Article and Find Full Text PDFChromium (Cr) contamination in rice poses a serious threat to human health. Therefore, we conducted pot experiments to investigate the influence of water management regimes on the formation of iron plaque on rice roots, and its effect on the accumulation and translocation of Cr in rice grown on contaminated soil. The results showed that water management regimes, including continuous and intermittent flooding, exerted notable effects on soil solution concentrations of Cr(VI) and Cr(III) through changes in redox potential, pH, and dissolved Fe(II) concentrations.
View Article and Find Full Text PDFChromium (Cr) pollution in soil is a global problem owing to its wide industrial use. The mobility, toxicity, and crop uptake of Cr depends on its valence state. Cr(VI) is highly mobile and toxic whereas Cr(III) is generally considered immobile and less toxic.
View Article and Find Full Text PDFThe consumption of rice contaminated with soil cadmium (Cd) threatens human health. It is essential to ensure the production of rice that meets food quality standards. Therefore, a large-scale field survey was conducted in Zhejiang province, southeastern China, to investigate the relationship between Cd accumulation in rice grains and Cd bioavailability in soil, and thus to establish a model to predict Cd contents in rice grains based on soil properties.
View Article and Find Full Text PDFSepiolite (SEP) is a clay mineral with great potential to stabilize soil heavy metals. A two-year field experiment was conducted to explore the optimum use of SEP to immobilize soil Cd and to promote the consumption safety of rice grown in a typical paddy field in Southern China. SEP was applied once or twice over the two-year study at three levels (0.
View Article and Find Full Text PDFFood chain contamination by soil cadmium (Cd) through leafy vegetable consumption poses a threat to human health. It is imperative to understand the relationship between Cd phytoavailability in soils and its uptake in common leafy vegetables. A large-scale field survey in Zhejiang Province, southeast China, was conducted to develop models to evaluate the Cd phytoavailability to leafy vegetables based on soil properties and to establish soil Cd thresholds based on food safety.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
February 2017
The combined use of organic amendment-assisted phytoextraction and electrokinetic remediation to decontaminate Cd-polluted soil was demonstrated in a laboratory-scale experiment. The plant species selected was the hyperaccumulator Sedum alfredii. Prior to the pot experiment, the loamy soil was treated with 15 g kg of pig manure compost, 10 g kg of humic acid, or 5 mmol kg of EDTA, and untreated soil without application of any amendment was the control.
View Article and Find Full Text PDFBiochar derived from various materials has been investigated with regard to its ability to decrease the bioavailability of heavy metals in contaminated soils, and thus reduce their potential to enter the food chain. However, little attention has been given to the adsorption capacity of untreated crop straws, which are commonly used as a biochar feedstock, especially in soils. Hence, this study was conducted to investigate the effect of crop straws on heavy metal immobilization and subsequent heavy metal uptake by maize and ryegrass in a soil artificially polluted by Cd and Pb.
View Article and Find Full Text PDFThere are increasing concerns on heavy metal contaminant in soils and vegetables. In this study, we investigated heavy metal pollution in vegetables and the corresponding soils in the main vegetable production regions of Zhejiang province, China. A total of 97 vegetable samples and 202 agricultural soil samples were analyzed for the concentrations of Cd, Pb, As, Hg, and Cr.
View Article and Find Full Text PDFKnowledge of the chromium (Cr) redox process in soil is important in addressing Cr bioavailability and risk assessment of contaminated soils. In this study, seven representative agricultural soils with different physicochemical properties were used to investigate the importance of microbially mediated Cr(VI) reduction and the response of soil bacterial community to Cr contamination. Chromium application increased soil bacterial diversity in Periudic Argosols, Calcaric Regosols, Stagnic Anthrosols, Mollisols, Typic Haplustalfs, and Ustic Cambosols, with an exception of Udic Ferrisols.
View Article and Find Full Text PDFAnthropogenic chromium (Cr) pollution in soils poses a great threat to human health through the food chain. It is imperative to understand Cr fate under the range of conditions suitable for rice growth. In this study, the effects of irrigation managements on dynamics of porewater Cr(VI) concentrations in rice paddies and Cr distribution in rice were investigated with pot experiments under greenhouse conditions.
View Article and Find Full Text PDFFood chain contamination by soil cadmium (Cd) through vegetable consumption poses a threat to human health. Therefore, an understanding is needed on the relationship between the phytoavailability of Cd in soils and its uptake in edible tissues of vegetables. The purpose of this study was to establish soil Cd thresholds of representative Chinese soils based on dietary toxicity to humans and develop a model to evaluate the phytoavailability of Cd to Pak choi (Brassica chinensis L.
View Article and Find Full Text PDFFood chain contamination by cadmium (Cd) is globally a serious health concern resulting in chronic abnormalities. Rice is a major staple food of the majority world population, therefore, it is imperative to understand the relationship between the bioavailability of Cd in soils and its accumulation in rice grain. Objectives of this study were to establish environment quality standards for seven different textured soils based on human dietary toxicity, total Cd content in soils and bioavailable portion of Cd in soil.
View Article and Find Full Text PDF