Publications by authors named "Wenda Song"

Slender tubes are in high demand owing to their lightweight and outstanding energy absorption. However, conventional slender tubes are prone to catastrophic failures such as Euler's buckling under axial load. Interestingly, growing bamboos overcome this similar dilemma via a unique tapered intine in the internodes, which endows them with excellent energy absorption.

View Article and Find Full Text PDF

Advanced epoxy (EP)-based composites, retaining excellent physical and mechanical properties, are in demand in many high-end devices, such as fan blades of aeroengines. However, the irreconcilable conflict between stiffness and toughness within an EP often leads to catastrophic brittle fracture. Herein, inspired by the medulla skeleton of wing feathers of , bioinspired EP-based composites (BECs) were obtained via integrating functionalized three-dimensional interconnected skeleton into a brittle EP.

View Article and Find Full Text PDF

Ultra-high molecular weight polyethylene (UHMWPE) fibers are broadly applied in lightweight and high-strength composite fiber materials. However, the development of UHMWPE fibers is limited by their smooth and chemically inert surfaces. To address the issues, a modified UHMWPE fibers material has been fabricated through the chelation reaction between Cu and chitosan coatings within the surface of fibers after plasma treatment, which is inspired by the hardening mechanism, a crosslinked network between metal ions and proteins/polysaccharides of the tips and edges in arthropod-specific cuticular tools.

View Article and Find Full Text PDF

The rational design of desirable lightweight structural materials usually needs to meet the strict requirements of mechanical properties. Seeking optimal integration strategies for lightweight structures and high mechanical performance is always of great research significance in the rapidly developing composites field, which also draws significant attention from materials scientists and engineers. However, the intrinsic incompatibility of low mass and high strength is still an open challenge for achieving satisfied engineering composites.

View Article and Find Full Text PDF

Weak interfacial strength restricts the mechanical properties of carbon fiber-reinforced composites. Here, inspired by natural hook-groove microstructure system (HGMS) of black kite (), we detail the steps to construct a biomimetic HGMS based on dopamine-functionalized carbon fibers (CFs) and zinc oxide nanorods (ZnO NRs) using a two-step modification approach. We describe the fabrication of biomimetic carbon fiber composites using vacuum-assisted contact molding (VACM) and subsequent characterization using standard comprehensive mechanical tests techniques.

View Article and Find Full Text PDF

Rotor plays a vital role in the dynamical system of an unmanned aerial vehicle (UAV). Prominent aerodynamic and acoustic performance are a long-term pursuit for the rotor. Inspired by excellent quiet flight characteristics of owls, this work adopted bionic edge design and rational material selection strategy to improve aerodynamic and acoustic performance of the rotor.

View Article and Find Full Text PDF

Hedgehog spines with evolved unique structures are studied on account of their remarkable mechanical efficiency. However, because of limitations of existing knowledge, it remains unclear how spines work as a material with a balance of stiffness and toughness. By combining qualitative three-dimensional (3D) structural characterization, material composition analysis, biomechanical analysis, and parametric simulations, the relationship between microstructural characteristic and multifunctional features of hedgehog spines is revealed here.

View Article and Find Full Text PDF

Weak interfacial activity and poor wettability between fiber and matrix are known to be the two main factors that restrict the mechanical properties of carbon fiber-reinforced composites (CFRCs). Herein, inspired by high strength and toughness characteristics of wing feathers of Black Kite (), natural hook-groove microstructure system (HGMS) and underlying mechanical interlocking mechanism were carefully investigated. Biomimetic HGMS based on dopamine-functionalized carbon fibers and ZnO nanorods were constructed successfully by a two-step modification method to enhance interfacial adhesion.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionhkaell5jt38lb7jjfbckkes2520bshvt): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once