Publications by authors named "Wenchun Xie"

Background: Catecholamines (epinephrine; norepinephrine; and dopamine) and their O-methylated metabolites (metanephrine; normetanephrine; and 3-methoxytyramine) are biomarkers for pheochromocytoma and paraganglioma. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was recommended by Endocrine Society for detecting these compounds. The influence of blood collection tubes on the analysis of the six analytes by LC-MS/MS was not thoroughly investigated, which we want to clarify in our study.

View Article and Find Full Text PDF

Background: Traditional phenotype-based screening for β-globin variant and β-thalassemia using hematological parameters is time-consuming with low-resolution detection. Development of a MALDI-TOF-MS assay using alternative markers is needed.

Methods: We constructed a MALDI-TOF-MS-based approach for identifying various β-globin disorders and classifying thalassemia major (TM) and thalassemia intermedia (TI) patients using 901 training samples with known HBB/HBA genotypes.

View Article and Find Full Text PDF

Objective: Measurements of plasma free metanephrines (MNs), including MN and normetanephrine, provide high sensitivity and specificity for the diagnosis of pheochromocytoma and paraganglioma (PPGL). 3-Methoxytyramine (3-MT) and chromogranin A (CgA) may allow the detection of dopamine-producing or biochemically silent PPGL. The aim of this study was to evaluate whether measurements of plasma 3-MT or CgA as a supplement of plasma MNs offer a better diagnostic strategy for initial testing of PPGL.

View Article and Find Full Text PDF

The intestinal microbiota closely interacts with the neuroendocrine system and exerts profound effects on host physiology. Here, we report that nucleotide-binding oligomerization domain 1 (Nod1) ligand derived from intestinal bacteria modulates catecholamine storage and secretion in mouse adrenal chromaffin cells. The cytosolic peptidoglycan receptor Nod1 is involved in chromogranin A (Chga) retention in dense core granules (DCGs) in chromaffin cells.

View Article and Find Full Text PDF

Measuring the concentrations of steroid hormones in plasma is critical for understanding their role in various vital physiological processes. The detection of underivatized steroid hormones in biofluids through mass spectrometry (MS) is typically hindered by low ionization efficiency. We described a novel matrix-assisted laser desorption/ionization-MS (MALDI-MS) approach based on hydroxylamine derivatization (HA-D) to analyze low-concentration steroid hormones in plasma.

View Article and Find Full Text PDF

Immunoglobulin G (IgG) is a class of monoclonal antibodies (mAbs) commonly produced in mammalian cell lines. These cell lines are grown in finely adjusted culture media, which contain components that may impact glycoforms. As variation of N-glycoforms can impact the biological properties of IgGs, medium composition should be controlled.

View Article and Find Full Text PDF

Carbohydrate sequences are important for various biological processes. It has recently been estimated to have 100,000-500,000 carbohydrate structures in mammalian glycome. However, the peripheral carbohydrate determinants on N- and O-glycoproteins, glycolipids, polysaccharides and secreted free sugars are limited in numbers.

View Article and Find Full Text PDF

Glycosylation is one of the most common post-translational modifications which diversifies the structure and function of glycoproteins like immunoglobulin G (IgG). The effector function of IgG depends on N-glycan patterns located in the crystalline fragment (Fc). Fc gamma receptor (FcγR)-binding affinity is one of the most important effector functions in IgG, and it varies with different IgG isotypes.

View Article and Find Full Text PDF

Mass spectrometry (MS) has become the primary method for high-sensitivity structural determination of oligosaccharides. Fragmentation in the negative-ion MS can provide a wealth of structural information and these can be used for sequence determination. However, although negative-ion MS of neutral oligosaccharide using the deprotonated molecule [M-H] as the precursor has been very successful for electrospray ionization (ESI), it has only limited success for matrix-assisted laser desorption/ionization (MALDI).

View Article and Find Full Text PDF

Glycosylation is a post-translational modification essential for maintaining the structure and function of proteins. Abnormal N-glycan patterns have been found in various diseases compared to healthy controls. A decrease in terminal galactosylated N-glycans of serum IgG in rheumatoid arthritis (RA) and osteoarthritis (OA) may be involved in their immunopathogenesis.

View Article and Find Full Text PDF

This paper describes the retention behavior of oligolysine and oligoarginine peptides of different lengths as a function of heptafluorobutyric acid (HFBA) concentration in ion-pairing reversed-phase chromatography in isocratic elution. A mixture of oligolysine and a mixture of oligoarginine with number of amino acid residues (dp) from two to eight were conveniently prepared by one-pot protease-catalyzed synthesis. Analysis of the logarithm of the retention factor k as a function of [HFBA] for each oligopeptide component, using a closed pairing model, provided values for (1) number (n) of paired HFBA anions per peptide molecule, (2) equilibrium constant (K(ip,m)) for ion pairing between oligopeptides and HFBA anions, and (3) product of the phase ratio and the distribution constant of the paired oligopeptide between the mobile and stationary phases (βK(d,ip)).

View Article and Find Full Text PDF

Our earlier study [J. Chromatogr. A 1218 (2011) 7765] on separation of an oligolysine mixture consisting of chains with 2-8 lysine residues (number of lysine residues, dp=2-8) by ion-pairing reversed-phase chromatography using heptafluorobutyric acid (HFBA) as an ion pairing reagent at fixed mobile phase acetonitrile (ACN) content was extended to isocratic elution conditions with different ACN percentages.

View Article and Find Full Text PDF

α-Chymotrypsin catalyzed oligomerization of the "dipeptide lego" KL-ethyl ester (OEt) in aqueous media triggers a rapid sol-gel transition due to formation of alternating (KL)x. Resulting mixed chain oligomers, at alkaline pH, self-assemble into β-sheets. Thereafter, intermolecular backbone hydrogen bonding between peptides causes formation of physically entangled nanofibrillar networks.

View Article and Find Full Text PDF

The retention behavior of an oligolysine mixture, consisting of two to eight residues, was examined at different concentrations of heptafluorobutyric acid (HFBA) in the mobile phase using a C18 column. A single ion record (SIR) mode of the mass spectrometer produced a distinct retention time for each oligomer component. As the concentration of HFBA increased, the retention time of each oligomer increased.

View Article and Find Full Text PDF

This Article describes the synthesis and physicomechanical properties of bioplastics prepared from methyl ω-hydroxytetradecanoic acid (Me-ω-OHC14), a new monomer available by a fermentation process using an engineered Candida tropicalis strain. Melt-condensation experiments were conducted using titanium tetraisopropoxide (Ti[OiPr](4)) as a catalyst in a two-stage polymerization (2 h at 200 °C under N(2), 4 h at 220 °C under 0.1 mmHg).

View Article and Find Full Text PDF

Omega-hydroxyfatty acids are excellent monomers for synthesizing a unique family of polyethylene-like biobased plastics. However, ω-hydroxyfatty acids are difficult and expensive to prepare by traditional organic synthesis, precluding their use in commodity materials. Here we report the engineering of a strain of the diploid yeast Candida tropicalis to produce commercially viable yields of ω-hydroxyfatty acids.

View Article and Find Full Text PDF

Biobased omega-carboxy fatty acid monomers 1,18-cis-9-octadecenedioic, 1,22-cis-9-docosenedioic, and 1,18-cis-9,10-epoxy-octadecanedioic acids were synthesized in high conversion yields from oleic, erucic and epoxy stearic acids by whole-cell biotransformations catalyzed by C. tropicalis ATCC20962. Maximum volumetric yields in shake-flasks were 17.

View Article and Find Full Text PDF

This paper explores reaction kinetics and mechanism for immobilized Humicola insolenscutinase (HIC), an important new biocatalyst that efficiently catalyzes non-natural polyester synthetic reactions. HIC, immobilized on Lewatit, was used as catalyst for epsilon-caprolactone (CL) and omega-pentadecalactone (PDL) ring-opening polymerizations (ROPs). Plots of percent CL conversion vs time were obtained in the temperature range from 50 to 90 degrees C.

View Article and Find Full Text PDF

Candida antarctica Lipase B (CALB) was covalently immobilized onto epoxy-activated macroporous poly(methyl methacrylate) Amberzyme beads (235 microm particle size, 220 A pore size) and nanoparticles (nanoPSG, diameter 68 nm) with a poly(glycidyl methacrylate) outer region. Amberzyme beads allowed CALB loading up to 0.16 g of enzyme per gram of support.

View Article and Find Full Text PDF