Seawater direct electrolysis (SDE) using renewable energy provides a sustainable pathway to harness abundant oceanic hydrogen resources. However, the side-reaction of the chlorine electro-oxidation reaction (ClOR) severely decreased direct electrolysis efficiency of seawater and gradually corrodes the anode. In this study, a redox-mediated strategy is introduced to suppress the ClOR, and a decoupled seawater direct electrolysis (DSDE) system incorporating a separate O evolution reactor is established.
View Article and Find Full Text PDFOwing to their nontoxicity, environmental friendliness, and high biocompatibility, physically cross-linked hydrogels have become popular research materials; however, their high water content and high free volume, along with the weak bonding interactions inherent to ordinary physically cross-linked hydrogels, limit their application in fields such as flexible devices, packaging materials, and substance transport regulation. Here, a structural barrier approach based on directional freezing-assisted salting out was proposed, and the directional structure significantly enhanced the barrier performance of the hydrogel. When the direction of substance diffusion was perpendicular to the pore channel structure of the directional freezing-PVA hydrogel (DFPVA), the Cl transmission rate was 57.
View Article and Find Full Text PDFDirect hydrogen production from inexhaustible seawater using abundant offshore wind power offers a promising pathway for achieving a sustainable energy industry and fuel economy. Various direct seawater electrolysis methods have been demonstrated to be effective at the laboratory scale. However, larger-scale in situ demonstrations that are completely free of corrosion and side reactions in fluctuating oceans are lacking.
View Article and Find Full Text PDFElectrochemical saline water electrolysis using renewable energy as input is a highly desirable and sustainable method for the mass production of green hydrogen; however, its practical viability is seriously challenged by insufficient durability because of the electrode side reactions and corrosion issues arising from the complex components of seawater. Although catalyst engineering using polyanion coatings to suppress corrosion by chloride ions or creating highly selective electrocatalysts has been extensively exploited with modest success, it is still far from satisfactory for practical applications. Indirect seawater splitting by using a pre-desalination process can avoid side-reaction and corrosion problems, but it requires additional energy input, making it economically less attractive.
View Article and Find Full Text PDF