Publications by authors named "Wenchong Wang"

Context: SCLC has had few drugs for treatment and a high malignancy rate. About two-thirds of SCLC patients have distant metastasis by the time they receive a diagnosis, and once it occurs, patient's survival time is short. Immunotherapy treatments can block immunosuppression and increase the body's antitumor ability.

View Article and Find Full Text PDF

Molecular ferroelectrics (MFs) have been proven to demonstrate excellent properties even comparable to those of inorganic counterparts usually with heavy metals. However, the validation of their device applications is still at the infant stage. The polycrystalline feature of conventionally obtained MF films, the patterning challenges for microelectronics and the brittleness of crystalline films significantly hinder their development for organic integrated circuits, as well as emerging flexible electronics.

View Article and Find Full Text PDF

The emergence of near-eye displays, such as head-mounted displays, is triggering a requirement for highly enhanced display resolution. High-resolution micro-displays with micro-organic light-emitting diodes (micro-OLEDs) can be a preferential candidate, owing to the mature industrialization of OLEDs along with the advantages of flexibility, light weight, and ease of processing. However, micro-OLEDs with pixel sizes down to micrometers are difficult to be achieved using conventional techniques such as fine metal mask evaporation and lithography.

View Article and Find Full Text PDF

Conductive polymers are considered promising electrode materials for organic transistors, but the reported devices with conductive polymer electrodes generally suffer from considerable contact resistance. Currently, it is still highly challenging to pattern conductive polymer electrodes on organic semiconductor surfaces with good structure and interface quality. Herein, we develop an in situ polymerization strategy to directly pattern the top-contacted polypyrrole (PPy) electrodes on hydrophobic surfaces of organic semiconductors by microchannel templates, which is also applicable on diverse hydrophobic and hydrophilic surfaces.

View Article and Find Full Text PDF

Miniaturized organic single-crystal arrays that are addressed by reading-out circuits are crucial for high performance and high-level integration organic electronics. Here, we report a lithography compatible strategy to fabricate organic single-crystal arrays via area-selective growth and solvent vapor annealing (SVA). The organic semiconducting molecules can first selectively grow on photographically patterned drain-source electrodes, forming ordered amorphous aggregates that can further be converted to discrete single-crystal arrays by SVA.

View Article and Find Full Text PDF

Non-planar organic molecules often form amorphous films via vapor phase deposition on surfaces. In this study, we demonstrate for the first time that direct crystalline growth of non-planar NPB is possible when the orientation of initially deposited molecules on a PTCDA nanocrystal template is controlled to make it analogous to the structure of the molecular crystal. The crystalline NPB nanowires can be further positioned by controlling the site-selective growth of PTCDA nanocrystal templates at pre-determined locations.

View Article and Find Full Text PDF

The pre-patterning of a substrate to create energetically more attractive or repulsive regions allows one to generate a variety of structures in physical vapor deposition experiments. A particularly interesting structure is generated if the energetically attractive region forms a rectangular grid. For specific combinations of the particle flux, the substrate temperature and the lattice size it is possible to generate exactly one cluster per cell, giving rise to nucleation control.

View Article and Find Full Text PDF

is reported. The concept is to absorb microdrops onto predefined locations by hydrophilicity difference. Owing to a universal solvent used, the method can be applied to pattern variety materials on substrates of interest over large size.

View Article and Find Full Text PDF

A simple, scalable method is reported to fabricate ordered hetero-structures of organic materials using template-directed growth. The 3D extension of the structures is firstly determined by pre-pattern size and deposition amount, and can further be in situ tuned by annealing at appropriate temperature.

View Article and Find Full Text PDF

Background Aims: Recent advances in stem cell research have raised the possibility of stem cells repairing or replacing retinal photoreceptor cells that are either dysfunctional or lost in many retinal diseases. Various types of stem cells have been used to replace retinal photoreceptor cells. Recently, peripheral blood stem cells, a small proportion of pluripotent stem cells, have been reported to mainly exist in the peripheral blood mononuclear cells (PBMCs).

View Article and Find Full Text PDF

The anisotropic wetting of functional organic molecules on a patterned surface and the development of a photolithography-compatible method to fabricate addressable organic structures is reported. For example, DtCDQA is grown on a SiO2 surface with a Au prepattern, achieving a high resolution cross-over organic structure.

View Article and Find Full Text PDF

Over the last two decades, organic semiconductors have attracted increasing attention because of the applications of their inorganic counterparts in a growing number of devices. At the same time, the further success of these materials will require device processing techniques for organic semiconductors that produce high performance and high integration over large areas. Conventional top-down patterning techniques based on photolithography have served powerful methods for the surface patterning of inorganic materials.

View Article and Find Full Text PDF

High performance p-/n-type transistors and complementary inverter circuits are demonstrated using patterned polypyrrole (PPY) as pure electrodes. Strikingly, these devices show good stability under continuous operation and long-term storage conditions. Furthermore, PPY electrodes also exhibit good applicability in solution-processed and flexible devices.

View Article and Find Full Text PDF

Molecule deposition on a prepatterned substrate is a recently developed technique to generate desired structures of organic molecules on surfaces via self-organization. For the case of prepatterned stripes, the time-resolved process of structure formation is studied via lattice Monte Carlo simulations. By systematic variation of the interaction strength, three distinct growth regimes can be identified: localized growth, bulge formation, and cluster formation.

View Article and Find Full Text PDF

An efficient fabrication technique for large area periodic metallic split-ring arrays has been demonstrated by the combination of tilted nanoimprint lithography and nanotransfer imprinting. The feature size of the split-rings can be adjusted by varying the key geometry parameters of the original imprinting mold. Due to the flexible nature of PDMS molds, these arrays can be patterned on curved surfaces.

View Article and Find Full Text PDF

The controllable growth of partially aligned monolayer to multilayer micrometer stripes was demonstrated by adjusting the pulling speed in a dip-coating process. The number of molecular layers decreases with the increasing pulling speed. A lower pulling speed yields mixed multilayers (3-9 monolayers).

View Article and Find Full Text PDF

A series of unsaturated long-chain-bridged diferrocenes Fc-(CH2)n-CH=CH-(CH2)n-Fc (4 a-e) was synthesized by means of olefin metathesis. Subsequent catalytic hydrogenation furnished the saturated alpha,omega-bis-ferrrocenyl oligoethylene products Fc-(CH2)m-Fc (5). Members of both series formed highly ordered laminar structures at the highly oriented pyrolytic graphite (HOPG) solid/liquid interface or on the Ag(110) surface, which were characterized by STM.

View Article and Find Full Text PDF