This study systematically optimized the key operating parameters and interpreted their effecting mechanisms in a flow-electrode capacitive deionization (FCDI) system. The optimal voltage, activated carbon electrode content, electrolyte concentration, feedwater flowrate, and electrode flowrate for desalinating low salinity feedwater (1.0 g L NaCl) were determined to be 1.
View Article and Find Full Text PDFSteady increase in electricity generation and heavy reliance on coal in Mainland Southeast Asia (M-SEA) create huge pressure on the environment. This study used information collected from individual thermal power plants (TPPs) in M-SEA to calculate emissions of air pollutants and greenhouse gases (GHG) for 2010, 2015 and 2019. The emissions were projected to 2030 following the latest national Power Development Plans.
View Article and Find Full Text PDFUrban stormwater runoff has been suggested as one important land-based pathway of microplastics (MPs) entering the oceans, in which the abundance and characteristics of MPs may be influenced by urban land use types. However, little information has been reported regarding this, especially in the tropical monsoon region. This study first reports the MPs in urban stormwater runoffs in a tropical monsoon region that were collected from four typical urban land use types, including industrial, highways, commercial, and residential areas.
View Article and Find Full Text PDFExtracellular polymeric substances (EPS), with a stratified structure including tightly-bound EPS (TB-EPS), loosely-bound EPS (LB-EPS), and soluble EPS (S-EPS) surrounding the microbial cells, are known to vitally affect the physicochemical and biological functions of activated sludge in wastewater treatment. Polysaccharides (PS), proteins (PN), and humic acids (HA) are key components of EPS but their roles in constructing the multi-layer architecture are still unclear. This study explored the EPS characteristics in relation to the components using spectroscopic fingerprinting techniques.
View Article and Find Full Text PDFBackground: After 2 years of anti-pandemic struggles, universities in the United Kingdom have started to witness a reverse transition, a shift from online to offline education. This includes encouraging students to begin face-to-face programmes and allowing flexibility for remote learners, but later requiring all students to return to campus by a certain date.
Objectives: This paper aims to explore the challenges and impacts brought about by this new transition and provide recommendations for universities to enhance student experience for future adversity.
This paper focuses on the nonminimum-phase laser pointing system's disturbances and uncertainties rejection problems on moving platforms. Moving platforms cause a variety of noticeable vibrations that substantially impair pointing accuracy. Additionally, the disturbance-observer-based control approaches currently in use sacrifice the desired disturbance suppression effects, stability margins, or tracking characteristics due to the nonminimum-phase laser pointing system.
View Article and Find Full Text PDFAppropriate assessment on concerned soil contaminants spatially is of importance for decision-makers and stakeholders to make efficient mitigation countermeasures. In this study, we applied multiple geostatistical approaches to explore soil nutrient and metallic contaminant distributions in a large river watershed in Thailand, and to compare their performances in predicting spatial distribution patterns of the concerned soil contaminants under suitable application scenarios. The total carbon, nitrogen and phosphorous in surface soils over the whole watershed were measured with their maximum concentrations up to 131.
View Article and Find Full Text PDFOsmotic microbial fuel cell (OsMFC) integrating forward osmosis into microbial fuel cell (MFC) favors the merits of organic removal, bioenergy generation, and high-quality water extraction from wastewater. This study demonstrated an 18.7% power density enhancement over a conventional MFC due to the water-flux-facilitated proton advection and net positive charge (NPC)-flux-promoted countercurrent proton exchange.
View Article and Find Full Text PDFSci Total Environ
November 2021
Urban surface water flooding is increasing because of climate change and urbanization, and brings great challenges to urban sustainable development. It is, therefore, most important to develop urban flood management approaches to alleviate the consequences of floods. China is implementing a "sponge city" initiative to tackle urban surface water flooding and improve urban water management.
View Article and Find Full Text PDFThis study investigated the feasibility of integrated ammonium stripping and/or coconut shell waste-based activated carbon (CSWAC) adsorption in treating leachate samples. To valorize unused biomass for water treatment application, the adsorbent originated from coconut shell waste. To enhance its performance for target pollutants, the adsorbent was pretreated with ozone and NaOH.
View Article and Find Full Text PDFMembrane bioreactor (MBR) is an advantageous technology for wastewater treatment. However, efficient nutrient removal and membrane fouling mitigation remain major challenges in its applications. In this study, an electroconductive moving bed membrane bioreactor (EcMB-MBR) was proposed for simultaneous removal of organics and nutrients from domestic wastewater.
View Article and Find Full Text PDFThe spatial distribution of seven metals (Pb, Hg, Cd, Cr, Ni, Cu, and Zn) and As in the surface sediments from three major tributaries of a tropical urbanizing river network (i.e., Chao Phraya River, Thachin River, and Pasak River) was investigated.
View Article and Find Full Text PDFOver the past years, Indonesia, the world's fourth most populous country, has confronted environmental problems due to uncontrolled generation of municipal solid waste (MSW). While the integrated solid waste management (ISWM) represents a critical strategy for Indonesia to control its production, it is also recognized that economic approaches also need to be promoted to address the waste problem concertedly. In this case study, empirical approaches are developed to understand how a volume-based waste fee could be incorporated into MSW collection services and how to apply a zero-waste approach in Indonesia by adapting resource recovery initiatives, adapted from Germany's mature experiences in integrating the CE paradigm into the latter's MSWM practices.
View Article and Find Full Text PDFJ Environ Sci (China)
October 2018
To understand the adsorption behavior of endocrine disrupting chemicals (EDCs) is important for enhancing the treatment performance and preventing potential secondary pollution caused by EDCs desorption in a microfiltration system. The dynamic adsorption of four representative EDCs, namely estriol (E3), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), and 4-nonylphenol (4-NP) in a microfiltration system was investigated using the Thomas' model. The product of the equilibrium constant and the total adsorption capacity of the membrane, Ka, for E3, E2, EE2, and 4-NP were 4.
View Article and Find Full Text PDFForward osmosis (FO) has attracted increasing interest in various applications for water and wastewater treatment and reuse. However, drawbacks caused by its lower-than-expected flux performance and fouling issues remain bottlenecks that limit the wider applications of FO technology. In this research, titanium dioxide (TiO) nanoparticles were grafted onto two commercially available FO membranes, a cellulose triacetate (CTA) membrane and an aquaporin (AqP) membrane, through a specially designed 3-(trimethoxysilyl)propyl methacrylate-polymethyl methacrylate-bromide (MEMO-PMMA-Br) monomer chain, to improve the filtration performance with regard to pure water flux and organic fouling resistance.
View Article and Find Full Text PDFIn this study, a lead zirconate titanate (PZT)/ polymerized polyurethane (PU) composite with three-dimensional (3D) reduced graphene oxide (rGO) as the conductive phase was prepared and the potential of 3D rGO to enhance the damping properties was investigated. The conductivity and damping properties of the composite were systematically investigated. The results show that the conductive threshold of the composite is reached at a very low rGO content of about 0.
View Article and Find Full Text PDFIn modern society, much more noise and vibration are produced in traffic and industrial systems, which is harmful to human health, equipment safety and the environment, therefore damping materials are becoming increasingly important. A piezoelectric damping composite could broaden the damping temperature range and enhance the damping loss factor simultaneously by introducing a dissipation route of mechanical to electrical to heat energy. In this paper, a novel piezo-damping polyurethane-based graphene foam (PGF)/PZT/PDMS composite (PGPP) was facilely fabricated using a one-step vacuum-assisted filling method.
View Article and Find Full Text PDFThe paper considers the tracking problem for a class of uncertain linear time invariant (LTI) systems with both uncertain parameters and external disturbances. The active disturbance rejection tracking controller is designed and the resulting closed-loop system's characteristics are comprehensively studied. In the time-domain, it is proven that the output of closed-loop system can approach its ideal trajectory in the transient process against different kinds of uncertainties by tuning the bandwidth of extended state observer (ESO).
View Article and Find Full Text PDFSeawater-driven forward osmosis (FO) is considered to be a novel strategy to concentrate nutrients in treated municipal wastewater for further recovery as well as simultaneous discharge of highly purified wastewater into the sea with low cost. As a preliminary test, the performance of FO membranes in concentrating nutrients was investigated by both batch experiments and model simulation approaches. With synthetic seawater as the draw solution, the dissolved organic carbon, phosphate, and ammonia in the effluent from a membrane bioreactor (MBR) treating municipal wastewater were 2.
View Article and Find Full Text PDFThe methodology of ADRC and the progress of its theoretical analysis are reviewed in the paper. Several breakthroughs for control of nonlinear uncertain systems, made possible by ADRC, are discussed. The key in employing ADRC, which is to accurately determine the "total disturbance" that affects the output of the system, is illuminated.
View Article and Find Full Text PDFThis paper designs the active disturbance rejection control (ADRC) to achieve desired performance for a class of MIMO lower-triangular nonlinear systems with large uncertainties under un-matched condition. We develop the ADRC with a set of extended state observers, and prove that the closed-loop system can achieve satisfied dynamic performance. The theoretical results illustrate the relationship between the bound of the concerned error and the bandwidth of extend state observers.
View Article and Find Full Text PDFThe removal of eight typical endocrine disrupting compounds (EDCs) in a full scale membrane bioreactor combined with anaerobic-anoxic-oxic process (A(2)/O-MBR) for municipal wastewater reclamation located in Beijing was investigated. These EDCs, including 4-octylphenol (4-OP), 4-n-nonylphenol (4-n-NP), bisphenol A (BPA), estrone (E1), 17α-estradiol (17α-E2), 17β-estradiol (17β-E2), estriol (E3) and 17α-ethinylestradiol (EE2), were simultaneously analyzed by gas chromatography/mass spectrometry after derivatization. The concentrations of eight EDCs were also measured in sludge of anaerobic, anoxic, oxic and membrane tanks to measure sludge-water distribution coefficients (K(d) values) as the indicator of adsorption propensity of target compound to sludge.
View Article and Find Full Text PDFThe removal of endocrine disrupting chemicals (EDCs) by a laboratory-scale membrane bioreactor (MBR) fed with synthetic sewage was evaluated and moreover, compared with that by a sequencing batch reactor (SBR) operated under same conditions in parallel. Eight kinds of typical EDCs, including 17β-estradiol (E2), estrone (E1), estriol (E3), 17α-ethynilestradiol (EE2), 4-octylphenol (4-OP), 4-nonylphenol (4-NP), bisphenol A (BPA) and nonylphenol ethoxylates (NPnEO), were spiked into the feed. Their concentrations in influent, effluent and supernatant were determined by gas chromatography-mass spectrometry method.
View Article and Find Full Text PDFThe occurrence and elimination of 19 micro-organic pollutants including endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in a full-scale anaerobic/anoxic/aerobic-membrane bioreactor process was investigated. The investigated process achieved over 70% removal of the target EDCs and 50%-100% removal of most of the PPCPs, with influent concentration ranging from ng/L to μg/L. Three PPCPs, carbamazepine, diclofenac and sulpiride were not well removed, with the removal efficiency below 20%.
View Article and Find Full Text PDF