The food-derived ingredients Rhein (RH) and chlorogenic acid (CGA) have DEMONSTRATED a potential synergistic effect in the treatment of ulcerative colitis (UC) through their anti-inflammatory and antioxidant properties. However, the oral co-delivery of RH and CGA faces challenges such as differences in hydrophilicity and hydrophobicity, gastrointestinal instability, and inadequate colonic targeting. To address these issues, shell-core nanoparticles were developed for the co-encapsulation of RH and CGA (CP@CGA-FA/TA@RH NPs).
View Article and Find Full Text PDFBackground: The complex etiology and pathogenesis underlying Chronic Non-Bacterial Prostatitis (CNP), coupled with the existence of a Blood Prostate Barrier (BPB), contribute to a lack of specificity and poor penetration of most drugs. Emodin (EMO), a potential natural compound for CNP treatment, exhibits commendable anti-inflammatory, anti-oxidant, and anti-fibrosis properties but suffers from the same problems as other drugs.
Methods: By exploiting the recognition properties of lactoferrin (LF) receptors that target intestinal epithelial cells (NCM-460) and prostate epithelial cells (RWPE-1), a pathway is established for the transrectal absorption of EMO to effectively reach the prostate.
Ulcerative colitis (UC) faces some barriers in oral therapy, such as how to safely deliver drugs to the colon and accumulate in the colon lesions. Hence, we report an advanced yeast particles system loaded with supramolecular nanoparticles with ROS scavenger (curcumin) to treat UC by reducing oxidative stress state and inflammatory response and accelerating the reprogramming of macrophages. In this study, the dual-sensitive materials are bonded on β-cyclodextrin (β-CD), the D-mannose (Man) is modified to adamantane (ADA), and then loaded with curcumin (CUR), to form a functional supramolecular nano-delivery system (Man-CUR NPs) through the host-guest interaction.
View Article and Find Full Text PDFPhototherapy, which relies on light to trigger phototherapeutic agents (PAs) to generate cytotoxic reactive oxygen species or hyperthermia, has received much attention in cancer treatment. However, traditional PAs have shortcomings such as low water solubility, easy aggregation-induced fluorescence quenching and low target site accumulation efficiency, which severely limit clinical anticancer applications. Naturally derived polysaccharides have attracted great attention in the scientific community in nano-drug delivery systems (NDDS) due to their abundant resources, biocompatibility, targeting ability, bioactivity and so on, which is expected to assist PAs to play a synergistic effect.
View Article and Find Full Text PDFRhein (RH), a natural anthraquinone compound, is considered an effective treatment candidate for ulcerative colitis (UC), whose multiple biological activities contribute to UC, including anti-inflammation, antioxidation, intestinal barrier repair, and microflora regulation. However, the application of RH is severely limited by its low water solubility, low bioavailability, and poor colonic targeting. Although some nanoparticles have been developed for the oral delivery of RH, most of them mainly highlighted only one effect of some drug delivery strategies but the above multiple biological activities.
View Article and Find Full Text PDFAn oral nanoparticle (NPs) encapsulated in chitosan/alginate hydrogel (CA-Gel) with dual-sensitive in pH and reactive oxygen species (ROS) was developed to load curcumin (CUR) based on the intracellular-specific characteristics of macrophages. Chondroitin sulfate (CS) wrapped PBAE-SA-PAPE with intracellular pH/ROS dual-sensitive characteristics and CUR via a simple nanoprecipitation method to form NPs (CS-CUR-NPs), and mixed CA-Gel to acquire the final preparation (CS-CUR-NPs-Gel). CS-CUR-NPs displayed an ideal average particle size (179.
View Article and Find Full Text PDFHerein, a β-1,3-d-glucan based microcarrier, yeast cell wall microparticles (YPs), was used to develop a food-source-based nano-in-micro oral delivery system for ulcerative colitis (UC) treatment. Briefly, lactoferrin (Lf), which targets intestinal epithelial cells, was used to encapsulate emodin (EMO) to form nanoparticles (EMO-NPs), and then loaded into YPs with the natural macrophages targeting ability, forming a final formula with two outer-inner targeting layers (EMO-NYPs). These dual-targeting strategy could enhance the dual-effects of EMO in anti-inflammatory and mucosal repair effects respectively.
View Article and Find Full Text PDFUlcerative colitis (UC) is a global, chronic, and refractory disease. Corticosteroids are first-line drugs for the treatment of UC but also cause adverse side effects. Budesonide (BUD), a corticosteroid with relatively low side effects, has been approved by the Food and Drug Administration for use as enteric capsules (Entocort EC) for the treatment of inflammatory bowel disease (IBD).
View Article and Find Full Text PDFIn this study, we developed an advanced colitis-targeted nanoparticles (NPs)-into-yeast cell wall microparticles (YPs) drug delivery system for ulcerative colitis (UC) therapy. In brief, YPs entrap hyaluronic acid (HA), and polyethylenimine (PEI) modified rhein (RH)-loaded ovalbumin NPs (HA/PEI-RH NPs) to form HA/PEI-RH NYPs. YPs can make HA/PEI-RH NPs pass through gastric environment stably and be degraded by β-glucanase to promote drug release from HA/PEI-RH NYPs in the colon.
View Article and Find Full Text PDF