Publications by authors named "Wenbao Qi"

Article Synopsis
  • * A recent case involved a 63-year-old woman in China who died from co-infection of H3N2 and H10N5, highlighting the evolving risk of these viruses to humans.
  • * Evolutionary analysis revealed that H10N5 viruses from wild birds in China are genetically distinct from those in humans and show frequent reassortment, indicating ongoing risks of spillover and public health threats.
View Article and Find Full Text PDF

Flaviviruses, such as dengue virus (DENV), Zika virus (ZIKV), and Japanese encephalitis virus (JEV), represent a substantial public health challenge as there are currently no approved treatments available. Here, we investigated the antiviral effects of bis-benzylisoquinoline alkaloids (BBAs) on flavivirus infections. We evaluated five specific BBAs-berbamine, tetrandrine, iso-tetrandrine, fangchinoline, and cepharanthine-and found that they effectively inhibited infections by ZIKV, DENV, or JEV by blocking virus entry and genome replication stages in the flavivirus life cycle.

View Article and Find Full Text PDF

Japanese encephalitis virus (JEV) is a mosquito-borne, zoonotic orthoflavivirus causing human encephalitis and reproductive disorders in pigs. Cell-intrinsic antiviral restriction factors are the first line of defense that prevent a virus from establishing a productive infection, while the molecular mechanism of the virus-host interaction is still not fully understood. Our in vitro experiments demonstrated that the Solute Carrier Family 25 Member 12 (SLC25A12) interacted with the JEV nonstructural protein 1 (NS1) and inhibited JEV replication.

View Article and Find Full Text PDF

African swine fever (ASF), caused by the African swine fever virus (ASFV), is a highly infectious disease afflicting domestic pigs and wild boars. It exhibits an alarming acute infection fatality rate of up to 100%. Regrettably, no commercial vaccines or specific drugs for combating this disease are currently available.

View Article and Find Full Text PDF

African swine fever (ASF) is an acute, febrile, and highly lethal infectious disease in pigs caused by the African swine fever virus (ASFV). Effective detection methods and strict biosecurity measures are crucial for preventing and controlling ASF, especially since there are currently no commercially available vaccines or antiviral drugs to combat ASFV infection effectively. However, the emergence of low-virulence strains of ASFV in recent years has led to false-positive results, highlighting the importance of early-produced antibody detection methods.

View Article and Find Full Text PDF

The H7 subtype avian influenza viruses are circulating widely worldwide, causing significant economic losses to the poultry industry and posing a serious threat to human health. In 2019, H7N2 and H7N9 co-circulated in Chinese poultry, yet the risk of H7N2 remained unclear. We isolated and sequenced four H7N2 viruses from chickens, revealing them as novel reassortants with H7N9-derived HA, M, NS genes and H9N2-derived PB2, PB1, PA,NP, NA genes.

View Article and Find Full Text PDF

The H10 subtype avian influenza virus (AIV) poses an ongoing threat to both birds and humans. Notably, fatal human cases of H10N3 and H10N8 infections have drawn public attention. In 2022, we isolated two H10N3 viruses (A/chicken/Shandong/0101/2022 and A/chicken/Shandong/0603/2022) from diseased chickens in China.

View Article and Find Full Text PDF
Article Synopsis
  • - Japanese encephalitis virus (JEV) significantly affects both livestock and human health, but the specific host factors involved in its lifecycle are not well understood.
  • - Researchers used a large CRISPR/Cas9 screen targeting over 19,000 human genes to identify 11 essential genes for JEV replication, including PRLHR and ASCC3.
  • - The study revealed that knocking down PRLHR disrupted autophagic flux, ultimately inhibiting JEV infection, providing valuable insights for future antiviral drug development.
View Article and Find Full Text PDF

H9N2 influenza viruses are globally endemic in birds, and a sharp increase in human infections with H9N2 occurred during 2021 to 2022. In this study, we assess the antigenic and pathogenic impact of 23 hemagglutinin (HA) amino acid mutations. Our study reveals that three specific mutations, labeled R164Q, N166D, and I220T, are responsible for the binding of antibodies with escape mutations.

View Article and Find Full Text PDF

Since mid-2016, the highly pathogenic H7N9 subtype avian influenza virus (AIV) has threatened both public health and the poultry industry. Although a vaccination strategy has been deemed imperative to manage the virus, the most commonly used inactivated vaccines today are susceptible to interference from maternal antibodies and associated with an over-reliance on humoral immunity. In response, we developed a recombination vaccine with the herpesvirus of turkeys (HVT) as the vector to squeeze HPAI H7N9 and assessed its protective efficiency in immunized chickens.

View Article and Find Full Text PDF

Senecavirus A (SVA)-induced porcine idiopathic vesicular disease has caused huge economic losses worldwide. Glucose metabolism in the host cell is essential for SVA proliferation; however, the impact of the virus on glucose metabolism in host cells and the subsequent effects are still unknown. Here, glycolysis induced by SVA is shown to facilitate virus replication by promoting lactate production, which then attenuates the interaction between the mitochondrial antiviral-signaling protein (MAVS) and retinoic acid-inducible gene I (RIG-I).

View Article and Find Full Text PDF

Japanese encephalitis virus (JEV) is a typical mosquito-borne flavivirus that can cause central nervous system diseases in humans and animals. Host factors attempt to limit virus replication when the viruses invade the host by using various strategies for replication. It is essential to clarify the host factors that affect the life cycle of JEV and explore its underlying mechanism.

View Article and Find Full Text PDF

H9N2 avian influenza viruses are endemic and persistent in China, but those that are prevalent in different provinces are also causes of wide epidemics, related to the spread of wild birds and the cross-regional trade in live poultry. For the past 4 years, beginning in 2018, we have sampled a live-poultry market in Foshan, Guangdong, in this ongoing study. In addition to the prevalence of H9N2 avian influenza viruses in China during this period, we identified isolates from the same market belonging to clade A and clade B, which diverged in 2012-2013, and clade C, which diverged in 2014-2016, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • - The study introduces a new method called multiplex π-FISH rainbow, designed to detect a variety of biomolecules (like DNA, RNA, and proteins) with increased efficiency and sensitivity, especially for short RNAs.
  • - This method has been successfully applied across different species, allowing researchers to analyze gene expression and identify neuron subclusters by using only two rounds of hybridization.
  • - Additionally, the researchers created π-FISH+ technology, which enhances the detection of short nucleic acid fragments, providing valuable tools for both basic biological research and clinical applications, including cancer diagnosis.
View Article and Find Full Text PDF

African swine fever virus (ASFV) causes a viral disease in swine with a mortality rate of approximately 100%, threatening the global pig industry's economic development. However, vaccines are not yet commercially available, and other antiviral therapeutics, such as antiviral drugs, are urgently needed. In this study, berbamine hydrochloride, a natural bis-benzylisoquinoline alkaloid isolated from the traditional Chinese herb Berberis amurensis, showed significant antiviral activity against ASFV.

View Article and Find Full Text PDF

N-methyladenosine (mA) is the most abundant RNA chemical modification in eukaryotes and is also found in the RNAs of many viruses. In recent years, mA RNA modification has been reported to have a role not only in the replication of numerous viruses but also in the innate immune escape process. In this review, we describe the viruses that contain mA in their genomes or messenger RNAs (mRNAs), and summarize the effects of mA on the replication of different viruses.

View Article and Find Full Text PDF

Avian influenza H5N6 virus not only wreaks economic havoc in the poultry industry but also threatens human health. Strikingly, as of August 2022, 78 human beings were infected with H5N6, and the spike in the number of human infections with H5N6 occurred during 2021. In the life cycle of influenza virus, neuraminidase (NA) has numerous functions, especially viral budding and replication.

View Article and Find Full Text PDF

Seasonal H3N2 influenza virus has always been a potential threat to public health. The reassortment of the human and avian H3N2 influenza viruses has resulted in major influenza outbreaks, which have seriously damaged human life and health. To assess the possible threat of the H3N2 avian influenza virus to human health, we performed whole-genome sequencing and genetic evolution analyses on 10 H3N2 field strains isolated from different hosts and regions in 2019-2020 and selected representative strains for pathogenicity tests on mice.

View Article and Find Full Text PDF

African swine fever virus (ASFV) is a highly infectious and lethal swine pathogen that causes severe socio-economic consequences in affected countries. Unfortunately, effective vaccine for combating ASF is unavailable so far, and the prevention and control strategies for ASFV are still very limited. Toosendanin (TSN), a triterpenoid saponin extracted from the medicinal herb Sieb.

View Article and Find Full Text PDF

Human infection with highly pathogenic H5N1 influenza virus causes severe respiratory diseases. Currently, the drugs against H5N1 are limited to virus-targeted inhibitors. However, drug resistance caused by these inhibitors is becoming a serious threat to global public health.

View Article and Find Full Text PDF

African swine fever (ASF) is a highly fatal porcine disease caused by the African swine fever virus (ASFV), and resulting in huge economic losses across the globe. ASF has been raging in China for 3 years, and recently EP402R-deleted ASFV strains emerged, showing sub-acute or chronic symptoms in pigs and providing novel difficulties to monitor and control the disease as EP402R-deleted strains possess no hemadsorption (HAD) ability. In addition, the gene deletion virus with low viral load is prone to results retest or false negative due to the high cycle threshold (Ct) value under the current real-time polymerase chain reaction (PCR) detection method.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionedvedv0c9g51m4ekfs66odf2f4sooh4k): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once