The growing discussion on "interdisciplinary integration" brings attention to the "interprofessional education" (IPE) in the field of plastic surgery. IPE not only improves the precision and effectiveness of plastic and reconstructive surgery but also plays an important role in personalized treatment. Whereas, the implementation of IPE in plastic and reconstructive surgery field faces huge difficulties such as technology combination, standard making, and lacking of qualified talents.
View Article and Find Full Text PDFEffectively eliminating apoptotic cells is precisely controlled by a variety of signaling molecules and a phagocytic effect known as efferocytosis. Abnormalities in efferocytosis may bring about the development of chronic conditions, including angiocardiopathy, chronic inflammatory diseases and autoimmune diseases. During wound healing, failure of efferocytosis leads to the collection of apoptosis, the release of necrotic material and chronic wounds that are difficult to heal.
View Article and Find Full Text PDFObjective: Hypoglossal-facial nerve anastomosis (HFA) is the most commonly used surgical treatment for severe facial palsy that does not respond to conservative treatments. A major complication of HFA is the loss of tongue function. The authors aimed to evaluate whether anastomosing the transected hypoglossal nerve using the ramus descendens hypoglossi could prevent tongue deviation and dysfunction in patients undergoing HFA.
View Article and Find Full Text PDFDoxorubicin (Dox), an anthracycline antibiotic, is widely used in cancer treatment. Although its antitumor efficacy appears significant, its clinical use is greatly restricted by its induction of cardiotoxicity. Cardiac senescence drives the Dox-induced cardiotoxicity, but whether diminishing these senescent cardiomyocytes could alleviate the cardiotoxicity remains unclear.
View Article and Find Full Text PDFThe global increase of cutaneous wounds imposes huge health and financial burdens on patients and society. Despite improved wound healing outcomes, conventional wound dressings are far from ideal, owing to the complex healing process. Smart wound dressings, which are sensitive to or interact with changes in wound condition or environment, have been proposed as appealing therapeutic platforms to effectively facilitate wound healing.
View Article and Find Full Text PDFBackground: Impaired wound re-epithelialization contributes to cutaneous barrier reconstruction dysfunction. Recently, N-methyladenosine (mA) RNA modification has been shown to participate in the determination of RNA fate, and its aberration triggers the pathogenesis of numerous diseases. Howbeit, the function of mA in wound re-epithelialization remains enigmatic.
View Article and Find Full Text PDFChronic non-healing wounds, a prevalent complication of diabetes, are associated with increased mortality in diabetic patients. Excessive accumulation of M1 macrophages in diabetic wounds promotes inflammation and results in dysregulated tissue repair. Adipose tissue macrophages (ATMs) derived from healthy lean donors have the ability to improve glucose tolerance and insulin sensitivity, as well as modulate inflammation.
View Article and Find Full Text PDFAmmonia (NH) and nitrous oxide (NO) have been regarded as the typical secondary pollutants emitted from vehicles equipped with a three-way catalyst (TWC). MultiGas FT-IR Analyzer was applied to determine the outlet gas concentrations in the light-off experiments, in order to understand how different reaction conditions and catalyst aging affect the production of these two pollutants. It was found that NO formation is favored by the existence of excess oxygen during NO reduction, whereas NH is readily formed within the lack of reactive oxygen species.
View Article and Find Full Text PDFAged skin wounds heal poorly, resulting in medical, economic, and social burdens posed by nonhealing wounds. Age-related defects in repair are associated with reduced myofibroblasts and dysfunctional extracellular matrix (ECM) deposition. Bidirectional cell-cell communication involving exosome-borne cargo such as micro RNAs (miRs) has emerged as a critical mechanism for wound healing and aged tissue regeneration.
View Article and Find Full Text PDFDoxorubicin (Dox), an important anthracycline, is a potent anticancer agent that is used for treating solid tumors and hematologic malignancies. However, its clinical use is hampered by cardiac cardiotoxicity. This study aimed to investigate the cardioprotective potential of miR-199a-3p.
View Article and Find Full Text PDFBackground: The chemotherapy drug doxorubicin (Dox) is widely used for treating a variety of cancers. However, its high cardiotoxicity hampered its clinical use. Exosomes derived from stem cells showed a therapeutic effect against Dox-induced cardiomyopathy (DIC).
View Article and Find Full Text PDFBackground: Immune checkpoint inhibitors (ICIs) have been an important therapeutic advancement in the field of cancer medicine. Recent reports provided greater insights into the cardiovascular adverse events, which prohibited the use of ICIs. Cardiovascular adverse events occur in different forms, such as myocarditis and cardiomyopathy, myocardial fibrosis, heart failure and pericardial disease.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via the original article.
View Article and Find Full Text PDFMany factors are involved in the process of nerve regeneration. Understanding the mechanisms regarding how these factors promote an efficient remyelination is crucial to deciphering the molecular and cellular processes required to promote nerve repair. Schwann cells (SCs) play a central role in the process of peripheral nerve repair/regeneration.
View Article and Find Full Text PDFCancer immunotherapy has become a well-established treatment option for some cancers; however, its use is hampered by its cardiovascular adverse effects. Immune checkpoint inhibitors (ICIs)-related cardiac toxicity took place in kinds of different forms, such as myocarditis, acute coronary syndrome, and pericardial disease, with high mortality rates. This study aimed to investigate the roles of programmed death-1 (PD-1) inhibitor, one of widespread used ICIs, in the development of murine cardiac injury.
View Article and Find Full Text PDFGlioblastoma (GBM) is the most common and lethal brain tumor in adults. Ionizing radiation (IR) is a standard treatment for GBM patients and results in DNA damage. However, the clinical efficacy of IR is limited due to therapeutic resistance.
View Article and Find Full Text PDFFacial paralysis can result in severe implications for patients. A good prognosis depends on the degree of nerve regeneration. Schwann cells (SCs) play an important role in facial nerve development and regeneration through migration.
View Article and Find Full Text PDFThe clinical application of doxorubicin (Dox) is limited due to its undesirable cardiotoxicity side effects. Cellular senescence plays an important role in Dox-induced cardiotoxicity. Exosomes derived from stem cells showed a therapeutic effect in Dox-induced cardiomyopathy (DIC).
View Article and Find Full Text PDFAims: Extracellular vesicles, especially exosomes, have emerged as key mediators of intercellular communication with the potential to improve cardiac function as part of cell-based therapies. We previously demonstrated that the cardioprotective factor, macrophage migration inhibitory factor (MIF), had an optimizing effect on mesenchymal stem cells (MSCs). The aim of this study was to determine the protective function of exosomes derived from MIF-pretreated MSCs in cardiomyocytes and to explore the underlying mechanisms.
View Article and Find Full Text PDFThe formation of ammonia (NH) as a byproduct during the operation of a three-way catalyst (TWC) in a simulated exhaust stream was investigated using a commercially available Pd/Rh TWC under steady-state and lean/rich cycling conditions. Ion molecular reaction-mass spectrometry was applied to determine NO, NO, and NH concentrations at a time resolution of 0.6 s.
View Article and Find Full Text PDFCardiac fibrosis is a pathological consequence of radiation‑induced fibroblast proliferation and fibroblast‑to‑myofibroblast transition (FMT). Mesenchymal stem cell (MSC) transplantation has been revealed to be an effective treatment strategy to inhibit cardiac fibrosis. We identified a novel MSC‑driven mechanism that inhibited cardiac fibrosis, via the regulation of multiple fibrogenic pathways.
View Article and Find Full Text PDFRadiotherapy significantly increases survival innumerous cancer patients, although it may have delayed adverse effects, including significant short‑ and long‑term effects on cardiovascular function, leading to significant morbidity and mortality. However, the mechanisms underlying these effects remain unclear. Cardiomyocyte senescence contributes to cardiovascular disease via impaired cardiac function.
View Article and Find Full Text PDFStem cell transplantation is a promising clinical strategy for curing ischemic cardiomyopathy. However, its efficacy is impaired by low cell survival following transplantation, partly caused by insufficient resistance of the transplanted stem cells to severe oxidative stress at the injury site. In the current study, it was demonstrated that the small‑molecule macrophage migration inhibitory factor (MIF) enhanced the defense of bone marrow‑derived mesenchymal stem cells (MSCs) against hypoxia/serum deprivation (SD)‑induced apoptosis in vitro.
View Article and Find Full Text PDFDoxorubicin (DOXO) is a chemotherapeutic agent widely used in the treatment of various types of cancer. However, cardiotoxicity is a major side effect of DOXO therapy due to the ability of this compound to induce cardiac cellular senescence. It is well known that microRNA (miR)-34a serves a role in cardiac dysfunction and ageing, and that it is involved in several cellular processes associated with DOXO-induced cardiotoxicity.
View Article and Find Full Text PDF