The Fontan procedure is the definitive palliation for pediatric patients born with single ventricles. Surgical planning for the Fontan procedure has emerged as a promising vehicle toward optimizing outcomes, where pre-operative measurements are used prospectively as post-operative boundary conditions for simulation. Nevertheless, actual post-operative measurements can be very different from pre-operative states, which raises questions for the accuracy of surgical planning.
View Article and Find Full Text PDF-mediated transient gene expression in Nicotiana benthamiana is widely used to study gene function in plants. One dramatic phenotype that is frequently screened for is cell death. Here, we present a simplified protocol for Agrobacterium-mediated transient gene expression by infiltration.
View Article and Find Full Text PDFBiotechnol Genet Eng Rev
December 2024
This study analyzed records of 200 patients who underwent hepatobiliary surgery to identify factors that contribute to lower extremity venous thromboembolism (VTE). 19 patients (9.50%) developed lower extremity deep vein thrombosis.
View Article and Find Full Text PDFBy employing dissipative particle dynamics (DPD) simulations combined with stochastic polymerization models, we have conducted a detailed simulation study of supramolecular solution polymerization as well as interfacial polymerization employing a coarse-grained model which is closer to the real monomer structure. By adding bending angle potentials to coarse-grained models representing supramolecular reactive monomers, we achieved monomer model simulations for different kinds of multiple hydrogen bonds. Our simulation results indicated that for the interfacial polymerization system, the volume of the monomer caused a strong steric hindrance effect, which in turn led to a low average degree of polymerization of the product.
View Article and Find Full Text PDFDuring the past two decades, glucosinolate (GLS) metabolic pathways have been under extensive studies because of the importance of the specialized metabolites in plant defense against herbivores and pathogens. The studies have led to a nearly complete characterization of biosynthetic genes in the reference plant Arabidopsis thaliana. Before methionine incorporation into the core structure of aliphatic GLS, it undergoes chain-elongation through an iterative three-step process recruited from leucine biosynthesis.
View Article and Find Full Text PDFDrought is a complex stress that limits plant growth and crop production worldwide. The mechanisms by which plants coordinately respond to distinct levels of water deficits (e.g.
View Article and Find Full Text PDFBackground: Weber-Christian disease (WCD) is an uncommon, idiopathic disease that is challenging to diagnose and has an unclear treatment protocol. We reviewed thirteen patients with WCD and analyzed their clinical characteristics. The purpose of this article was to improve the understanding of this rare disorder.
View Article and Find Full Text PDFCombining genetic engineering of MPK4 activity and quantitative proteomics, we established an in planta system that enables rapid study of MPK4 signaling networks and potential substrate proteins. Mitogen activated protein kinase 4 (MPK4) is a multifunctional kinase that regulates various signaling events in plant defense, growth, light response and cytokinesis. The question of how a single protein modulates many distinct processes has spurred extensive research into the physiological outcomes resulting from genetic perturbation of MPK4.
View Article and Find Full Text PDFIn this paper, molecular dynamics simulations are performed to study the annealing process of γ-TiAl alloy with different parameters after introducing residual stress into prepressing. By mainly focusing on the dynamic evolution process of microdefects during annealing and the distribution of residual stress, the relationship between microstructure and residual stress is investigated. The results show that there is no phase transition during annealing, but atom distortion occurs with the change of temperature, and the average grain size slightly increases after annealing.
View Article and Find Full Text PDFSucrose nonfermenting 1-related protein kinase 2.6 (SnRK2.6), also known as Open Stomata 1 (OST1) in , plays a pivotal role in abscisic acid (ABA)-mediated stomatal closure.
View Article and Find Full Text PDFMost pathogenic bacteria deliver virulence factors into host cytosol through type III secretion systems (T3SS) to perturb host immune responses. The expression of T3SS is often repressed in rich medium but is specifically induced in the host environment. The molecular mechanisms underlying host-specific induction of T3SS expression is not completely understood.
View Article and Find Full Text PDFKinase-mediated phosphorylation is a pivotal regulatory process in stomatal responses to stresses. Through a redox proteomics study, a sucrose non-fermenting 1-related protein kinase (SnRK2.4) was identified to be redox-regulated in guard cells upon abscisic acid treatment.
View Article and Find Full Text PDFAim: To study the binding of connective tissue growth factor (CTGF) to cystine knot-containing ligands and how this impacts platelet-derived growth factor (PDGF)-B signaling.
Methods: The binding strengths of CTGF to cystine knot-containing growth factors including vascular endothelial growth factor (VEGF)-A, PDGF-B, bone morphogenetic protein (BMP)-4, and transforming growth factor (TGF)-β1 were compared using the LexA-based yeast two-hybrid system. EYG48 reporter strain that carried a wild-type LEU2 gene under the control of LexA operators and a lacZ reporter plasmid (p80p-lacZ) containing eight high affinity LexA binding sites were used in the yeast two-hybrid analysis.
Biochim Biophys Acta
February 2015
Mitogen-activated protein kinase (MPK) cascades are highly conserved signaling pathways that respond to environmental cues. Arabidopsis MPK4 has been identified as a stress-responsive protein kinase. Here we demonstrate that Brassica napus MPK4 (BnMPK4) is activated by hydrogen peroxide (H2O2) and phytohormone abscisic acid (ABA).
View Article and Find Full Text PDFReversibly oxidized cysteine sulfhydryl groups serve as redox sensors or targets of redox sensing that are important in various physiological processes. However, little is known about redox-sensitive proteins in guard cells and how they function in stomatal signaling. In this study, Brassica napus guard-cell proteins altered by redox in response to abscisic acid (ABA) or methyl jasmonate (MeJA) were identified by complementary proteomics approaches, saturation differential in-gel electrophoresis and isotope-coded affinity tagging.
View Article and Find Full Text PDFProgrammed cell death has been associated with plant immunity and senescence. The receptor kinase XA21 confers resistance to bacterial blight disease of rice (Oryza sativa) caused by Xanthomonas oryzae pv. oryzae (Xoo).
View Article and Find Full Text PDFPlant genomes encode a large number of proteins that potentially function as immune receptors in the defense against pathogen invasion. As a well-characterized receptor kinase consisting of 23 tandem leucine-rich repeats, a transmembrane domain and a serine/threonine kinase, the rice (Oryza sativa) protein XA21 confers resistance to a broad spectrum of Xanthomonas oryzae pv. oryzae (Xoo) races that cause bacterial blight disease.
View Article and Find Full Text PDFJ Integr Plant Biol
April 2011
Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is the most destructive bacterial disease of rice. The cloned rice gene Xa21 confers resistance to a broad spectrum of Xoo races.
View Article and Find Full Text PDFPlants uniquely contain large numbers of protein kinases, and for the vast majority of the 1,429 kinases predicted in the rice (Oryza sativa) genome, little is known of their functions. Genetic approaches often fail to produce observable phenotypes; thus, new strategies are needed to delineate kinase function. We previously developed a cost-effective high-throughput yeast two-hybrid system.
View Article and Find Full Text PDFUnlabelled: Oval cell activation, as part of the regenerative process after liver injury, involves considerable cell-matrix interaction. The matricellular protein, connective tissue growth factor (CTGF), has been shown to be critical for oval cell activation during liver regeneration following N-2-acetylaminofluorene/partial hepatectomy. To understand the mode of action of CTGF during this process, N-terminal CTGF was used as bait to screen a yeast two-hybrid complementary DNA library specific for regenerating livers with massive oval cell presence.
View Article and Find Full Text PDF