pH and peroxynitrite (ONOO) are two critical biomarkers to unveil the corresponding status of endoplasmic reticulum (ER) stress and mitochondrial dysfunction, which are closely related to Alzheimer's disease (AD). Simultaneously monitoring pH and ONOO fluctuations in the ER and mitochondria during AD progression is pivotal for clarifying the interplay between the disorders of the two organelles and revealing AD pathogenesis. Herein, we designed and synthesized a dual-channel fluorescent probe (DCFP) to visualize pH and ONOO in the ER and mitochondria.
View Article and Find Full Text PDFCoupling hydrogen evolution reaction (HER) with biomass valorization using a photoelectrochemical (PEC) system presents a promising approach for effectively converting solar energy to chemical energy. A crucial biomass valorization reaction is the production of value-added 2,5-furandicarboxylic acid (FDCA) via 5-Hydroxymethylfurfural (HMF) oxidation reaction (HMFOR). To achieve efficient FDCA production, we demonstrate an effective photoanode strategy that combines metal silicidation, dopant segregation, and surface reconstruction to create a bimetallic silicide NiPtSi/n-Si photoanode.
View Article and Find Full Text PDFTumours can obtain nutrients and oxygen required to progress and metastasize through the blood supply. Inducing angiogenesis involves the sprouting of established vessel beds and their maturation into an organized network. Here we generate a comprehensive atlas of tumour vasculature at single-cell resolution, encompassing approximately 200,000 cells from 372 donors representing 31 cancer types.
View Article and Find Full Text PDFBladder cancer is a prevalent malignancy with high mortality rates worldwide. Hypoxia is a critical factor in the development and progression of cancers. However, whether and how hypoxia-related genes (HRGs) could affect the development and the chemotherapy response of bladder cancer is still largely unexplored.
View Article and Find Full Text PDFMetal silicide/Si photoelectrodes have demonstrated significant potential for application in photoelectrochemical (PEC) water splitting to produce H. To achieve an efficient and economical hydrogen evolution reaction (HER), a paramount consideration lies in attaining exceptional catalytic activity on the metal silicide surface with minimal use of noble metals. Here, this study presents the design and construction of a novel NiPtSi/p-Si photocathode.
View Article and Find Full Text PDFMitochondrial copper signaling pathway plays a role in Alzheimer's disease (AD), especially in relevant Amyloid-β oligomers (AβOs) neurotoxicity and mitochondrial dysfunction. Clarifying the relationship between mitochondrial copper homeostasis and both of mitochondrial dysfunction and AβOs neurotoxicity is important for understanding AD pathogenesis. Herein, we designed and synthesized a ratiometric fluorescent probe CHC-NS4 for Cu(I).
View Article and Find Full Text PDFCO is a greenhouse gas that contributes to environmental deterioration; however, it can also be utilized as an abundant C1 resource for the production of valuable chemicals. Solar-driven photoelectrocatalytic (PEC) CO utilization represents an advanced technology for the resourcing of CO . The key to achieving PEC CO utilization lies in high-performance semiconductor photoelectrodes.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) is a clinically aggressive subtype of breast cancer. Core transcriptional regulatory circuitry (CRC) consists of autoregulated transcription factors (TFs) and their enhancers, which dominate gene expression programs and control cell fate. However, there is limited knowledge of CRC in TNBC.
View Article and Find Full Text PDFHydrogen evolution reaction (HER) coupled with biomass conversion is a sustainable route to produce clean energy H and value-added chemicals simultaneously. Herein, an amorphous Ni-Mo-B-O bifunctional electrocatalyst was synthesized through a facile electrodeposition method and employed as a cathode for HER to produce H and as an anode for the conversion of hydroxymethylfurfural (HMF) to furandicarboxylic acid (FDCA). Besides leading to the formation of amorphous structures, the introduction of Mo and B can increase the electron density and optimize the electronic structure of the electrocatalyst, thus substantially increasing the catalytic activity of the catalyst.
View Article and Find Full Text PDFObjective: Central precocious puberty (CPP) is a rare condition that causes early sexual development in children. Although the cure is effective, the etiology of central precocious puberty is unclear.
Methods: In total, 10 girls with central precocious puberty and same number of age-matched female controls were enrolled.
Infiltrative basal cell carcinoma (iBCC) is a particularly aggressive subtype of basal cell carcinoma that tends to progress and recur after surgery, and its malignancy is closely related to the tumor microenvironment. In this study, we performed a comprehensive single-cell RNA analysis to profile 29,334 cells from iBCC and adjacent normal skin. We found active immune collaborations enriched in iBCC.
View Article and Find Full Text PDFDNA-templated silver nanoclusters (DNA-AgNCs) have attracted significant attention due to their unique fluorescence properties. However, so far, the relatively low quantum yields of the DNA-AgNCs and the complex design of DNA-AgNC-based sensors have limited their application in biosensing or bioimaging. Herein, we report a novel fluorescence enhancement method.
View Article and Find Full Text PDFA silicon nanowire-based fluorescence lifetime thermometer (NWFLT) was fabricated for the simultaneous measurement of intra- and extra-cellular temperatures. Using the NWFLT, an obvious heterogeneity of the temperature was found along the longitude direction of the NWFLT, especially between the inside and outside of the cell.
View Article and Find Full Text PDFThe recurrence of cutaneous squamous cell carcinoma (cSCC) after surgery is associated with the reprogramming of the tumor microenvironment (TME), and remains a key factor affecting its outcomes. We employed single-cell RNA sequencing (scRNA-seq) to examine the dynamic changes in epithelial cells, T cells, myeloid cells, and fibroblasts between primary and recurrent cSCC. Cell clustering, cell trajectory, cell-cell communication, and gene set enrichment analysis were used to investigate the TME heterogeneity between primary and recurrent cSCC.
View Article and Find Full Text PDFSimultaneous monitoring of the ATP levels at various sites of a single cell is crucial for revealing the ATP-related processes and diseases. In this work, we rationally fabricated single nanowire-based fluorescence biosensors, by which the ATP levels of the cytoplasm and nucleus in a single cell can be simultaneously monitored with a high spatial resolution. Utilizing the as-fabricated single nanowire biosensor, we demonstrated that the ATP levels of the cytoplasm were around 20-30% lower than that of the nucleus in both L929 and HeLa cells.
View Article and Find Full Text PDFOptical regulation strategy with the aid of hybrid materials can significantly optimize the performance of terahertz devices. Gold nanobipyramids (AuNBPs) with synthetical tunability to the near-infrared band show strong local field enhancement, which improves optical coupling at the interface and benefits the modulation performance. We design AuNBPs-integrated terahertz modulators with multiple structured surfaces and demonstrate that introducing AuNBPs can effectively enhance their modulation depths.
View Article and Find Full Text PDFDetecting the temperature of intracellular mitochondria with high sensitivity and stability is crucial to understanding the cellular metabolism and revealing the processes of mitochondria-related physiology. In this paper, employing the long fluorescence lifetime of modified Au nanoclusters (mAuNCs) by 4-(carboxybutyl) triphenylphosphonium bromide, we developed a fluorescence lifetime thermometer with high sensitivity and stability for the temperature of the intracellular mitochondria. A high relative temperature sensitivity of 2.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2020
Current strategies to construct cell-based bioartificial tissues largely remain on a multicell level. Taking cell diversity into account, single-cell manipulation is urgently needed for delicate bioartificial tissue construction. Current single-cell isolation and profiling techniques involve invasive processes and thus are not applicable for single-cell manipulation.
View Article and Find Full Text PDFSilicon (Si)-based Schottky junction photoelectrodes have attracted considerable attention for photoelectrochemical (PEC) water splitting in recent years. To realize highly efficient Si-based Schottky junction photoelectrodes, the critical challenge is to enable the photoelectrodes to not only have a high Schottky barrier height (SBH), by which a high photovoltage can be obtained, but also ensure an efficient charge transport. Here, we propose and demonstrate a strategy to fabricate a high-performance NiSi/n-Si Schottky junction photoanode by metal silicidation in conjunction with dopant segregation (DS).
View Article and Find Full Text PDFIntracellular thermometry with favorable biocompatibility and precision is essential for insight into temperature-related cellular events. Here, liquid-core nanocapsule ratiometric fluorescent thermometers (LCN-RFTs) were prepared by encapsulating thermosensitive organic fluorophores (N,N'-di(2-ethylhexyl)-3,4,9,10-perylene tetracarboxylic diimide, DEH-PDI) with hydrophobic solvent (2,2,4-trimethylpentane, TMP) into polystyrene/silica hybrid nanoshells. As the fluorescent thermosensitive unit of the LCN-RFT, the TMP solution of DEH-PDI was responsible for the fluorescence response to temperature.
View Article and Find Full Text PDFIonic calcium (Ca) is an important second messenger in cells, particularly in the neuron. A deficiency or excess of Ca would lead to neuronal apoptosis and further injury to the brain. For accurate analysis of intracellular Ca, a single silicon nanowire (SiNW)-based ratiometric biosensor was constructed by simultaneously anchoring Ru(bpy)(mcbpy-O-Su-ester)(PF), as a reference molecule, and Fluo-3, as a response molecule, onto the surface of a single SiNW.
View Article and Find Full Text PDFBackground: Blood gas analyzers are capable of delivering results on electrolytes and metabolites within a few minutes and facilitate clinical decision-making. However, whether the results can be used interchangeably with values measured by chemistry analyzers remains controversial. Blood gas analyzers are capable of delivering results on electrolytes and metabolites within a few minutes and facilitate clinical decision-making.
View Article and Find Full Text PDFTo realize a real-time thermal feedback, monitoring the temperature of the treated tissue is critical for photothermal therapy (PTT). The poor spatial resolution and low accuracy of current methods for the detection of tissue temperature limits the application of PTT. Herein, by assembling the temperature-responsive DNA stem-loop marked with Texas red (TR) onto the surface of gold nanobipyramids (AuNBPs), a bifunctional reagent (AuNBPs-DNA-TR) was fabricated for PTT and synchronously monitoring the temperature.
View Article and Find Full Text PDF