Publications by authors named "WenJuan Yao"

Background: Rehabilitation of endodontically treated teeth with large coronal destruction is still a clinical challenge. No established guidelines specify where a conventional crown with fiber-reinforced composite (FRC) post-and-resin core or an endocrown (EC) is indicated and which material or pulpal extension should be used.

Objective: To provide evidence for restoring severely damaged maxillary first molar (MFM) by comparing the fracture and debonding resistance after being restored with the ceramic EC and the conventional zirconia crown and FRC post-and-resin core.

View Article and Find Full Text PDF

The roles and mechanisms of A-kinase anchoring protein 1 (AKAP1) in vascular smooth muscle cell (VSMC) phenotypic modulation and neointima formation are currently unknown. AKAP1 is a mitochondrial PKA-anchored protein and maintains mitochondrial homeostasis. This study aimed to investigate how AKAP1/PKA signaling plays a protective role in inhibiting VSMC phenotypic transformation and neointima formation by regulating mitochondrial fission.

View Article and Find Full Text PDF

The cilia of the outer hair cells (OHCs) are the key microstructures involved in cochlear acoustic function, and their interactions with lymph in the cochlea involve complex, highly nonlinear, coupled motion and energy conversions, including macroscopic fluid-solid coupling. Recent optical measurements have shown that the frequency selectivity of the cochlea at high sound levels is entirely mechanical and is determined by the interactions of the hair bundles with the surrounding fluid. In this paper, an analytical mathematical model of the spiral cochlea containing macro- and micromeasurements was developed to investigate how the phonosensitive function of OHCs' motions is influenced by the macrostructural and microstructural fluid-solid coupling in the spiral cochlea.

View Article and Find Full Text PDF

So far, explaining the mechanism on active phonosensitive amplification in the cochlea is a major and difficult medical question. Among them, one of the key problems is that the motion pattern of the organ of Corti (OC) is still unknown. To this end, a multi-scale cochlear model including a three-dimensional spiral OC was established based on CT data and light source imaging experimental data, which complete combined the macroscopic and microscopic structure.

View Article and Find Full Text PDF

Background And Aims: The pathological roles and mechanisms of Rho-specific guanine nucleotide dissociation inhibitor 3 (RhoGDI3) in vascular smooth muscle cell (VSMC) phenotypic modulation and neointima formation are currently unknown. This study aimed to investigate how RhoGDI3 regulates the Nod-like receptor protein 3 (NLRP3) inflammasome in platelet-derived growth factor-BB (PDGF-BB)-induced neointima formation.

Methods: For in vitro assays, human aortic VSMCs (HA-VSMCs) were transfected with pcDNA3.

View Article and Find Full Text PDF

Due to the tiny and delicate structure of the cochlea, the auditory system is the most sensitive to explosion impact damage. After being damaged by the explosion impact wave, it usually causes long-term deafness, tinnitus, and other symptoms. To better understand the influence of impact load on the cochlea and basilar membrane (BM), a three-dimensional (3D) fluid-solid coupling finite element model was developed.

View Article and Find Full Text PDF

Brain consumes nearly 20% supply of energy from glucose metabolism by oxidative phosphorylation and aerobic glycolysis. Less active state of glycolytic enzymes results in a limited capacity of glycolysis in the neurons of adult brain. Here we identified that Warburg effect is enhanced in hippocampal neurons during aging.

View Article and Find Full Text PDF
Article Synopsis
  • Direct experimental measurement on the human cochlea is challenging due to ethical concerns and its complex structure, leading to the use of the finite element method (FEM) for research.
  • A 3D finite element model of the cochlea was developed to study the impacts of conditions like basilar membrane damage, round window sclerosis, and perilymph fistula on hearing.
  • The findings enhance understanding of cochlear biomechanics and could inform clinical approaches to diagnosing and treating hearing loss.
View Article and Find Full Text PDF

Background: Numerical simulations can reflect the changes in physiological properties caused by various factors in the cochlea.

Aims/objective: To analyze the influence of lesions of the basilar membrane (BM) on the dynamic response of the middle ear.

Method: Based on healthy human ear CT scan images, use PATRAN software to build a three-dimensional finite element model of the human ear, then apply NASTRAN software to conduct analysis of solid-fluid coupled frequency response.

View Article and Find Full Text PDF

Background: The pathological role of cytochrome c oxidase 5A (COX5A) in vascular neointima formation remains unknown.

Aim: This study aims to investigate the role of COX5A on platelet-derived growth factor BB (PDGFBB)- mediated smooth muscle phenotypic modulation and neointima formation and clarify the molecular mechanisms behind this effect.

Methods: For , human aortic vascular smooth muscle cells (HA-VSMCs) were transfected with pcDNA3.

View Article and Find Full Text PDF

Some experiments can't be realized because the cochlea's Corti is the most delicate and complex sensory organ. In this paper, some typical and special behavioral characteristics in the process of sensation were found in medical clinic. Based on the interdisciplinary principles of medicine, physics and biology, a real numerical simulation model of Corti is established.

View Article and Find Full Text PDF

Due to ethical issues and the nature of the ear, it is difficult to directly perform experimental measurements on living body elements of the human ear. Therefore, a numerical model has been developed to effectively assess the effect of the replacement of artificial ossicles on hearing in the inner ear. A healthy volunteer's right ear was scanned to obtain CT data, which were digitalized through the use of a self-compiling program and coalescent Patran-Nastran software to establish a 3D numerical model of the whole ear, and a frequency response of a healthy human ear was analyzed.

View Article and Find Full Text PDF

In order to explore the hearing loss resulting from exposure to continuous or intermittent loud noise. A three-dimensional liquid-solid coupling finite element model of spiral cochlea was established. The reliability of the model was verified, and the stress and amplitude of the basilar membrane of the pivotal structure in cochlea were analyzed.

View Article and Find Full Text PDF

The mechanisms of angiotensin II (Ang II) on regulating adipogenic differentiation and function remain unknown. In this study, we focus on revealing the role of C-terminal-binding protein 1 (CtBP1) on Ang II-mediated adipogenic differentiation and mature adipocyte browning. Amounts of 3T3-L1 and CtBP1-KO 3T3-L1 were treated with Ang II for 24 h and then induced adipogenic differentiation, or cells were first induced differentiation and then treated with Ang II.

View Article and Find Full Text PDF

Studying the insertion process of cochlear implant (CI) electrode array (EA) is important to ensure successful, sufficient, and safe implantation. A three-dimensional finite element (FE) model was developed to simulate the insertion process. The cochlear structures were reconstructed from an average statistical shape model (SSM) of human cochlea.

View Article and Find Full Text PDF

Background: Endolymphatic hydrops (EH) is considered as the pathological correlate of Menière's disease (MD) and cause of hearing loss. The mechanism of EH, remaining unrevealed, poses challenges for formalized clinical trials.

Objective: This study aims to investigate the development of hearing loss, as well as the effect of dehydration treatment on EH animal models.

View Article and Find Full Text PDF

The quasi-three-dimensional effect induced by functional groups (FGo) and the in-plane stress and structural deformation induced by grain boundaries (GBs) may produce more novel physical effects. These physical effects are particularly significant in high-temperature environments and are different from the behavior in bulk materials, so its physical mechanism is worth exploring. Considering the external field (strain and temperature field), the internal field (FGo and GBs) and the effect of distance between FGs and GBs on the bonding energy, configuration transition, and stress distribution of graphene/h-BN with FGo and GBs (GrO-BN-GBs) in the interface region were studied by molecular dynamics (MD).

View Article and Find Full Text PDF

Background: Lesions causing changes in the microstructure of the organ of Corti may lead to hearing impairment.

Aims/objectives: The aim of this study was to investigate the effect of various structural lesions on the organ of Corti and the auditory function.

Methods: A finite element method of the cochlea and the organ of Corti were established based on computed tomography scanning and anatomical data.

View Article and Find Full Text PDF

Perivascular adipose tissue (PVAT) homeostasis plays an important role in maintaining vascular function, and PVAT dysfunction may induce several pathophysiological situations. In this study, we investigated the effect and mechanism of the local angiotensin II (Ang II) on PVAT. High-throughput comparative proteomic analysis, based on TMT labeling combined with LC-MS/MS, were performed on an in vivo Ang II infusion mice model to obtain a comprehensive view of the protein ensembles associated with thoracic PVAT (tPVAT) dysfunction induced by Ang II.

View Article and Find Full Text PDF

RhoGTPase is involved in PDGF-BB-mediated VSMC phenotypic modulation. RhoGDIs are key factors in regulating RhoGTPase activation. In the present study, we investigated the regulatory effect of RhoGDI1 on the activation of RhoGTPase in VSMC transformation and neointima formation.

View Article and Find Full Text PDF

For the processing and detection of speech and music, the human cochlea has an exquisite sensitivity and selectivity of frequency and a dynamic range. How the cochlea performs these remarkable functions has fascinated auditory scientists for decades. Because it is not possible to measure sound-induced vibrations within the cochlea in a living human being, mathematical modeling has played an important role in cochlear mechanics.

View Article and Find Full Text PDF

Purpose: Ang II regulates RhoGDI1 stability and cell proliferation via SUMOylation. However, how Ang II regulates RhoGDI1 SUMOylation remains unknown. In this study, we focused on revealing the effects of E1 subunits (Aos1 and Uba2) on RhoGDI1 SUMOylation in HA-VSMC proliferation.

View Article and Find Full Text PDF

In this work, the defects (local stress generated) induce the formation of graphene/h-BN planar heterostructure (Gr-hBN-PH) to form "unsteady structure". Then, the coupling effects of external field (heat flow direction, strain and temperature field) and internal field (defect number, geometry shape and interfacial configuration) on the interface thermal conductivity (ITC) of Gr-hBN-PH were studied. The results show phonon transmission is less affected by compression deformation under the action of force-heat-defect coupling, while phonon transmission of heterostructure is more affected by tensile deformation.

View Article and Find Full Text PDF

We analyzed the role of the RhoA/ROCK pathway in regulating endothelial dysfunction triggered by LPS and the protective effects of TSG (2, 3, 5, 4'-tetrahydroxystilbene-2-O-β-D-glucoside). Human umbilical vein endothelial cells (HUVECs) were treated with LPS at different concentrations or at different time points. Cells were also pretreated with 30 μM ROCK inhibitor Y27632 for 30 min or different concentrations of TSG for 24 h and then were incubated with 100 μg/ml LPS for another 24 h.

View Article and Find Full Text PDF

Sirtuin 3 (SIRT3) is a deacetylase involved in the development of many inflammation-related diseases including liver fibrosis. Withaferin A (WFA) is a bioactive constituent derived from the plant, which has extensive pharmacological activities; however, little is known about the regulatory role of SIRT3 in the WFA-induced antifibrogenic effect. The current study is aimed at investigating the role of SIRT3 in WFA-induced antioxidant effects in liver fibrosis.

View Article and Find Full Text PDF