Publications by authors named "WenJia Bai"

Article Synopsis
  • Cardiac trabeculae are muscular structures in the heart that have a crucial but not fully understood role in heart function and disease.
  • A study involving over 47,000 participants from the UK Biobank found links between trabecular shape and rare genetic variants in 56 genes related to heart muscle function and development.
  • The research also revealed 68 genetic regions associated with heart condition pathways, indicating that variations in trabeculation may influence the severity of heart diseases like hypertrophic and dilated cardiomyopathy.
View Article and Find Full Text PDF

In the field of medical Vision-Language Pretraining (VLP), significant efforts have been devoted to deriving text and image features from both clinical reports and associated medical images. However, most existing methods may have overlooked the opportunity in leveraging the inherent hierarchical structure of clinical reports, which are generally split into 'findings' for descriptive content and 'impressions' for conclusive observation. Instead of utilizing this rich, structured format, current medical VLP approaches often simplify the report into either a unified entity or fragmented tokens.

View Article and Find Full Text PDF

Cardiac magnetic resonance imaging (CMR) has emerged as a valuable diagnostic tool for cardiac diseases. However, a significant drawback of CMR is its slow imaging speed, resulting in low patient throughput and compromised clinical diagnostic quality. The limited temporal resolution also causes patient discomfort and introduces artifacts in the images, further diminishing their overall quality and diagnostic value.

View Article and Find Full Text PDF

3D motion estimation from cine cardiac magnetic resonance (CMR) images is important for the assessment of cardiac function and the diagnosis of cardiovascular diseases. Current state-of-the art methods focus on estimating dense pixel-/voxel-wise motion fields in image space, which ignores the fact that motion estimation is only relevant and useful within the anatomical objects of interest, e.g.

View Article and Find Full Text PDF

Background: Hypertrophic cardiomyopathy (HCM) is an important cause of sudden cardiac death associated with heterogeneous phenotypes, but there is no systematic framework for classifying morphology or assessing associated risks. Here, we quantitatively survey genotype-phenotype associations in HCM to derive a data-driven taxonomy of disease expression.

Methods: We enrolled 436 patients with HCM (median age, 60 years; 28.

View Article and Find Full Text PDF

Two key questions in cardiac image analysis are to assess the anatomy and motion of the heart from images; and to understand how they are associated with non-imaging clinical factors such as gender, age and diseases. While the first question can often be addressed by image segmentation and motion tracking algorithms, our capability to model and answer the second question is still limited. In this work, we propose a novel conditional generative model to describe the 4D spatio-temporal anatomy of the heart and its interaction with non-imaging clinical factors.

View Article and Find Full Text PDF

Cardiovascular ageing is a process that begins early in life and leads to a progressive change in structure and decline in function due to accumulated damage across diverse cell types, tissues and organs contributing to multi-morbidity. Damaging biophysical, metabolic and immunological factors exceed endogenous repair mechanisms resulting in a pro-fibrotic state, cellular senescence and end-organ damage, however the genetic architecture of cardiovascular ageing is not known. Here we use machine learning approaches to quantify cardiovascular age from image-derived traits of vascular function, cardiac motion and myocardial fibrosis, as well as conduction traits from electrocardiograms, in 39,559 participants of UK Biobank.

View Article and Find Full Text PDF

Cities in the developing world are expanding rapidly, and undergoing changes to their roads, buildings, vegetation, and other land use characteristics. Timely data are needed to ensure that urban change enhances health, wellbeing and sustainability. We present and evaluate a novel unsupervised deep clustering method to classify and characterise the complex and multidimensional built and natural environments of cities into interpretable clusters using high-resolution satellite images.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating, degenerative disease of the central nervous system that affects approximately 2.8 million people worldwide. Compelling evidence from observational studies and clinical trials indicates a strong association between brain volume loss (BVL) and the accumulation of disability in MS.

View Article and Find Full Text PDF

Deep learning (DL) models have provided state-of-the-art performance in various medical imaging benchmarking challenges, including the Brain Tumor Segmentation (BraTS) challenges. However, the task of focal pathology multi-compartment segmentation (e.g.

View Article and Find Full Text PDF

Objectives: The UK Biobank (UKBB) and German National Cohort (NAKO) are among the largest cohort studies, capturing a wide range of health-related data from the general population, including comprehensive magnetic resonance imaging (MRI) examinations. The purpose of this study was to demonstrate how MRI data from these large-scale studies can be jointly analyzed and to derive comprehensive quantitative image-based phenotypes across the general adult population.

Materials And Methods: Image-derived features of abdominal organs (volumes of liver, spleen, kidneys, and pancreas; volumes of kidney hilum adipose tissue; and fat fractions of liver and pancreas) were extracted from T1-weighted Dixon MRI data of 17,996 participants of UKBB and NAKO based on quality-controlled deep learning generated organ segmentations.

View Article and Find Full Text PDF

Deep learning models usually suffer from the domain shift issue, where models trained on one source domain do not generalize well to other unseen domains. In this work, we investigate the single-source domain generalization problem: training a deep network that is robust to unseen domains, under the condition that training data are only available from one source domain, which is common in medical imaging applications. We tackle this problem in the context of cross-domain medical image segmentation.

View Article and Find Full Text PDF

Myocardial motion and deformation are rich descriptors that characterize cardiac function. Image registration, as the most commonly used technique for myocardial motion tracking, is an ill-posed inverse problem which often requires prior assumptions on the solution space. In contrast to most existing approaches which impose explicit generic regularization such as smoothness, in this work we propose a novel method that can implicitly learn an application-specific biomechanics-informed prior and embed it into a neural network-parameterized transformation model.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is an inflammatory and demyelinating neurological disease of the central nervous system. Image-based biomarkers, such as lesions defined on magnetic resonance imaging (MRI), play an important role in MS diagnosis and patient monitoring. The detection of newly formed lesions provides crucial information for assessing disease progression and treatment outcome.

View Article and Find Full Text PDF

Large epidemiological studies such as the UK Biobank (UKBB) or German National Cohort (NAKO) provide unprecedented health-related data of the general population aiming to better understand determinants of health and disease. As part of these studies, Magnetic Resonance Imaging (MRI) is performed in a subset of participants allowing for phenotypical and functional characterization of different organ systems. Due to the large amount of imaging data, automated image analysis is required, which can be performed using deep learning methods, e.

View Article and Find Full Text PDF

The success of neural networks on medical image segmentation tasks typically relies on large labeled datasets for model training. However, acquiring and manually labeling a large medical image set is resource-intensive, expensive, and sometimes impractical due to data sharing and privacy issues. To address this challenge, we propose AdvChain, a generic adversarial data augmentation framework, aiming at improving both the diversity and effectiveness of training data for medical image segmentation tasks.

View Article and Find Full Text PDF

Aortic dimensions and distensibility are key risk factors for aortic aneurysms and dissections, as well as for other cardiovascular and cerebrovascular diseases. We present genome-wide associations of ascending and descending aortic distensibility and area derived from cardiac magnetic resonance imaging (MRI) data of up to 32,590 Caucasian individuals in UK Biobank. We identify 102 loci (including 27 novel associations) tagging genes related to cardiovascular development, extracellular matrix production, smooth muscle cell contraction and heritable aortic diseases.

View Article and Find Full Text PDF

Diastole is the sequence of physiological events that occur in the heart during ventricular filling and principally depends on myocardial relaxation and chamber stiffness. Abnormal diastolic function is related to many cardiovascular disease processes and is predictive of health outcomes, but its genetic architecture is largely unknown. Here, we use machine learning cardiac motion analysis to measure diastolic functional traits in 39,559 participants of the UK Biobank and perform a genome-wide association study.

View Article and Find Full Text PDF

Background: Measurement of cardiac structure and function from images (e.g. volumes, mass and derived parameters such as left ventricular (LV) ejection fraction [LVEF]) guides care for millions.

View Article and Find Full Text PDF

Recovering the 3D motion of the heart from cine cardiac magnetic resonance (CMR) imaging enables the assessment of regional myocardial function and is important for understanding and analyzing cardiovascular disease. However, 3D cardiac motion estimation is challenging because the acquired cine CMR images are usually 2D slices which limit the accurate estimation of through-plane motion. To address this problem, we propose a novel multi-view motion estimation network (MulViMotion), which integrates 2D cine CMR images acquired in short-axis and long-axis planes to learn a consistent 3D motion field of the heart.

View Article and Find Full Text PDF

Machine learning has been widely adopted for medical image analysis in recent years given its promising performance in image segmentation and classification tasks. The success of machine learning, in particular supervised learning, depends on the availability of manually annotated datasets. For medical imaging applications, such annotated datasets are not easy to acquire, it takes a substantial amount of time and resource to curate an annotated medical image set.

View Article and Find Full Text PDF

Background: Amyloid-β (Aβ) PET has emerged as clinically useful for more accurate diagnosis of patients with cognitive decline. Aβ deposition is a necessary cause or response to the cellular pathology of Alzheimer's disease (AD). Usual clinical and research interpretation of amyloid PET does not fully utilise all information regarding the spatial distribution of signal.

View Article and Find Full Text PDF

Background: Hypertrophic cardiomyopathy (HCM) is caused by rare variants in sarcomere-encoding genes, but little is known about the clinical significance of these variants in the general population.

Objectives: The goal of this study was to compare lifetime outcomes and cardiovascular phenotypes according to the presence of rare variants in sarcomere-encoding genes among middle-aged adults.

Methods: This study analyzed whole exome sequencing and cardiac magnetic resonance imaging in UK Biobank participants stratified according to sarcomere-encoding variant status.

View Article and Find Full Text PDF

Background: Excessive alcohol consumption is associated with damage to various organs, but its multi-organ effects have not been characterised across the usual range of alcohol drinking in a large general population sample.

Methods: We assessed global effect sizes of alcohol consumption on quantitative magnetic resonance imaging phenotypic measures of the brain, heart, aorta, and liver of UK Biobank participants who reported drinking alcohol.

Results: We found a monotonic association of higher alcohol consumption with lower normalised brain volume across the range of alcohol intakes (-1.

View Article and Find Full Text PDF

Objectives: This study sought to investigate whether shape-based late gadolinium enhancement (LGE) metrics and simulations of re-entrant electrical activity are associated with arrhythmic events in patients with nonischemic dilated cardiomyopathy (NIDCM).

Background: The presence of LGE predicts life-threatening ventricular arrhythmias in NIDCM; however, risk stratification remains imprecise. LGE shape and simulations of electrical activity may be able to provide additional prognostic information.

View Article and Find Full Text PDF