Background: Children and adolescents with intellectual disabilities (IDs) are at risk of falls due to balance problems. One way to palliate balance deficits among this population is via core stability exercises. However, comprehensive studies that examine the effectiveness of core stability exercises in improving balance in this target population are lacking.
View Article and Find Full Text PDFSubsequently to the publication of the above article, an interested reader drew to the authors' attention that the GAPDH bands shown for the western blots portrayed in Fig. 2 (associated with the α‑SMA proteins) on p. 1482 were strikingly similar to the GAPDH bands associated with the CAF64 and NF64 experiments in Fig.
View Article and Find Full Text PDFCentral nervous system (CNS) damage is usually irreversible owing to the limited regenerative capability of neurons. Following CNS injury, astrocytes are reactively activated and are the key cells involved in post-injury repair mechanisms. Consequently, research on the reprogramming of reactive astrocytes into neurons could provide new directions for the restoration of neural function after CNS injury and in the promotion of recovery in various neurodegenerative diseases.
View Article and Find Full Text PDFProgressive neuronal dysfunction and death are key features of neurodegenerative diseases; therefore, promoting neurogenesis in neurodegenerative diseases is crucial. With advancements in proteomics and high-throughput sequencing technology, it has been demonstrated that histone post-transcriptional modifications (PTMs) are often altered during neurogenesis when the brain is affected by disease or external stimuli and that the degree of histone modification is closely associated with the development of neurodegenerative diseases. This review aimed to show the regulatory role of histone modifications in neurogenesis and neurodegenerative diseases by discussing the changing patterns and functional significance of histone modifications, including histone methylation, acetylation, ubiquitination, phosphorylation, and lactylation.
View Article and Find Full Text PDFRadiotherapy is a well-established cytotoxic therapy for local solid cancers, utilizing high-energy ionizing radiation to destroy cancer cells. However, this method has several limitations, including low radiation energy deposition, severe damage to surrounding normal cells, and high tumor resistance to radiation. Among various radiotherapy methods, boron neutron capture therapy (BNCT) has emerged as a principal approach to improve the therapeutic ratio of malignancies and reduce lethality to surrounding normal tissue, but it remains deficient in terms of insufficient boron accumulation as well as short retention time, which limits the curative effect.
View Article and Find Full Text PDFPolypyrimidine tract-binding protein 1 (PTBP1) is a member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family, which plays a key role in alternative splicing of precursor mRNA and RNA metabolism. PTBP1 is universally expressed in various tissues and binds to multiple downstream transcripts to interfere with physiological and pathological processes such as the tumor growth, body metabolism, cardiovascular homeostasis, and central nervous system damage, showing great prospects in many fields. The function of PTBP1 involves the regulation and interaction of various upstream molecules, including circular RNAs (circRNAs), microRNAs (miRNAs) and long non-coding RNAs (lncRNAs).
View Article and Find Full Text PDFColorectal cancer (CRC) is one of the most common cancers in the world. Abnormal proliferation is a chief characteristic of cancer and is the initiation of CRC progression. As an important component of tight junctions, CLDN6 regulates the proliferation of multiple tumors.
View Article and Find Full Text PDFSoybean phospholipid was used as an amphiphilic material to form reverse micelles (RMs) in medium glycerol monolinoleate (Maisine) with Exenatide (EXT.) encapsulated in the polar core formed by the hydrophilic part of phospholipid. Cremopher RH40 and caprylocaproyl macrogol-8 glycerides EP/caprylocaproyl polyoxyl-8 glycerides NF (Labrasol) were added as surfactants to prepare reverse micelles-self emulsifying drug delivery system (RMs-SEDDS).
View Article and Find Full Text PDFVentricular fibrillation (VF) is a fatal arrhythmia with a high incidence in cardiac patients, but VF arrest under perfusion is a neglected method of intraoperative arrest in the field of cardiac surgery. With recent advances in cardiac surgery, the demand for prolonged VF studies under perfusion has increased. However, the field lacks simple, reliable, and reproducible animal models of chronic ventricular fibrillation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2022
Inefficient tumor penetration caused by the characteristics of tumor microenvironments is a primary obstacle to improving drug delivery efficiency, which restricts the chemotherapy drug efficacy. One such promising idea is to construct micro/nanomotors (MNMs) as an effective delivery vehicle by way of producing autonomous motion and converting exogenous stimuli or external energies from the surrounding environment into mechanical forces. In this research, the Pt/DOX nanomotor was prepared, and the enhanced diffusion and positive chemotaxis driven by substrates were verified , proof of the enhanced cellular uptake and deep penetration of Pt/DOX.
View Article and Find Full Text PDFIn previous studies, we found that triphenylphosphine-modified doxorubicin (TPP-DOX) can effectively kill drug-resistant tumor cells, but its effect on sensitive tumor cells is weakened. In this research, with albumin from Bovine Serum (BSA) as a carrier, TPP-DOX@MnBSA (TD@MB) nanoparticles were prepared by co-loading TPP-DOX and manganese which can realize the combination of chemotherapy and chemodynamic therapy (CDT). The uniform and stable nano-spherical nanoparticle can promote drug uptake, achieve mitochondrial-targeted drug delivery, increase intracellular reactive oxygen species (ROS) and catalyze the production of highly toxic oxidative hydroxyl radicals (OH·), further inhibiting the growth of both sensitive and drug-resistant MCF-7 cells.
View Article and Find Full Text PDFLung cancer has the highest incidence and mortality rates among the malignant tumor types worldwide. Platinum‑based chemotherapy is the main treatment for advanced non‑small‑cell lung cancer (NSCLC), and epidermal growth factor receptor‑tyrosine kinase inhibitors (EGFR‑TKIs) have greatly improved the survival of patients with EGFR‑sensitive mutations. However, there is no standard therapy for treating patients who are EGFR‑TKI resistant.
View Article and Find Full Text PDFInt J Environ Res Public Health
June 2020
Physical activity (PA) is important for the development of children and adolescents with hearing impairments (HI). This systematic review aims to summarise the existing literature pertaining to the PA of children and adolescents with HI. A systematic search was conducted on eight major electronic databases.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
February 2020
Background: We have previously described CLDN6 as a tumor suppressor gene in breast cancer. Here, a new finding is that CLDN6 was upregulated under hypoxia, a commonly recognized factor that promotes tumor metastasis. In this study, we aim to explain this confusing finding and delineate the role of CLDN6 in the breast cancer metastasis induced by hypoxia.
View Article and Find Full Text PDFMany oncogenes are involved in the progression from low-grade squamous intraepithelial lesions (LSILs) to high-grade squamous intraepithelial lesions (HSILs); which greatly increases the risk of cervical cancer (CC). Thus, a reliable biomarker for risk classification of LSILs is urgently needed. The prolyl isomerase Pin1 is overexpressed in many cancers and contributes significantly to tumour initiation and progression.
View Article and Find Full Text PDFOn account of the biological significance of self-assembling peptides in blocking the cellular mass exchange as well as impeding the formation for actin filaments resulting in program cell death, stimuli-responsive polypeptide nanoparticles have attracted more and more attention. In this work, we successfully fabricated doxorubicin-loaded polyethylene glycol-block-peptide (FFKY)-block-tetraphenylethylene (PEG-Pep-TPE/DOX) nanoparticles, where the aggregation-induced emission luminogens (AIEgen, TPE-CHO) can become a fluorescence resonance energy transfer (FRET) pair with the entrapped antitumor drug DOX to detect the release of drugs dynamically. This is the first successful attempt to detect and quantify the change of FRET signals in A549 cells via three methods to monitor the cellular uptake of nanoprobes and intracellular drug molecule release intuitively.
View Article and Find Full Text PDFBackground: Estrogen receptor β (ERβ) has been reported to play an anti-cancer role in breast cancer, but the regulatory mechanism by which ERβ exerts this effect is not clear. Claudin-6 (CLDN6), a tight junction protein, acts as a tumor suppressor gene in breast cancer. Our previous studies have found that 17β-estradiol (E2) induces CLDN6 expression and inhibits MCF-7 cell migration and invasion, but the underlying molecular mechanisms are still unclear.
View Article and Find Full Text PDFThis study was aimed to develop DOX-TPP loaded acetal-PEG-PCCL micelles to improve the clinical efficacy of drug resistance tumor. Chemotherapy is one of the main treatments for breast cancer but is plagued by multidrug resistance (MDR). DOX-TPP-loaded micelles can enhance the specific concentration of drugs in the tumor and improve the efficacy and overcome MDR.
View Article and Find Full Text PDFObjective: POU5F1 (OCT4) is implicated in cancer stem cell self-renewal. Currently, some studies have shown that OCT4 has a dual function in suppressing or promoting cancer progression. However, the precise molecular mechanism of OCT4 in breast cancer progression remains unclear.
View Article and Find Full Text PDFThe tumor microenvironment is the cellular environment that is also described as the "soil" for supporting tumor growth, proliferation, invasion and metastasis, as well as protecting tumor cells from immunological recognition. Notably, tumor cells can grow much faster than other normal organs and invade surrounding tissues more easily, which results in abnormal expression of enzymes in the tumor microenvironment, including matrix metalloproteinases, cathepsins, phospholipases, oxidoreductases, etc. In opposite, due to the high selectivity and catalytic activity, these enzymes can promote nanoparticles to recognize tumor tissues more accurately, and the more accumulation of drugs at primal tumor sites will enhance therapeutic efficacy with lower systemic toxicity.
View Article and Find Full Text PDFBackground: Self-renewal is dependent on an intrinsic gene regulatory network centered on OCT4 and on an atypical cell cycle G1/S transition, which is also regulated by OCT4. p21, a gene negatively associated with self-renewal and a senescence marker, is a member of the universal cyclin-dependent kinase inhibitors (CDKIs) and plays critical roles in the regulation of the G1/S transition. The expression of p21 can be regulated by OCT4-targeted DNA methyltransferases (DNMTs), which play distinct roles in gene regulation and maintaining pluripotency properties.
View Article and Find Full Text PDFThe gastrointestinal (GI) tract is not a common site of metastasis in primary lung cancer. The aim of the present study was to reveal the clinical and prognostic characteristics of gastrointestinal metastases of lung cancer (GMLC). Information on 366 cases of GMLC was collected and factors that affect severe GI complications were analyzed.
View Article and Find Full Text PDFBreast cancer is the leading cause of cancer-related death for women, and multidrug resistance (MDR) is the major obstacle faced by chemotherapy for breast cancer. We have previously synthesized a doxorubicin (DOX) derivative by conjugating DOX with triphenylphosphonium (TPP) to achieve mitochondrial delivery, which induced higher cytotoxicity in drug-resistant breast cancer cells than DOX itself. Due to its amphiphilicity, TPP-DOX is difficult to physically entrap in nanocarriers.
View Article and Find Full Text PDF