Publications by authors named "WenFeng Zhou"

Chalcogenides are the most important infrared nonlinear optical (NLO) material candidates, and the exploration of high-performance ones is attractive and challengeable. Hitherto, there is no NLO scandium (Sc) chalcogenides experimentally studied. Here, new quaternary Sc thiophosphate CsScPS (CSPS) was synthesized by the facile metal oxide-boron-sulfur/reactive flux hybrid solid-state method.

View Article and Find Full Text PDF

Integrated electro-optic (EO) modulators are the core components of the optoelectronic information technology, and lithium niobate is currently the most widely used crystalline thin film material; however, finite EO coefficients limit the modulation efficiency of the modulators. In this Letter, we present an integrated EO modulator using a microring resonator on the lead zirconate titanate (PZT) and silicon nitride (SiN) heterogeneous platform. The microwave attenuation is reduced by using low loss tangent and dielectric constant SiN as the electrode substrate, achieving an EO bandwidth of 33 GHz.

View Article and Find Full Text PDF

The design of bimetallic metal-organic frameworks (MOFs) with a hierarchical structure is important to improve the electrocatalytic performance of catalysts due to their synergistic effect on different metal ions. In this work, the catalyst comprises bimetallic iron-nickel MOF-derived FeNi phosphides, intricately integrated with phosphorus-doped reduced graphene oxide architectures (FeNiP-C/P-rGA) through the hydrothermal and phosphating treatments. The hierarchical architecture of the catalyst is beneficial for exposing active sites and facilitating electron transfer.

View Article and Find Full Text PDF

Chalcophosphates are an important type of infrared nonlinear optical (NLO) candidates in view of their rich anionic motifs. Here, two copper chalcophosphates CuPSe (CPSe) and CsCuPS (CCPS) were synthesized and studied as IR NLO materials. They both feature three-dimensional polyanionic frameworks constructed by similar T2-supertetrahedra, and the structure of CCPS can be derived from CPSe via introducing Cs and substituting Se with S.

View Article and Find Full Text PDF

This research exploited biochar, sourced from Ginkgo leaves (GLs), to facilitate the adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) in aqueous environments. The results reveal that GL biochar, activated with ZnCl at a temperature of 500°C (500-ZGBC), demonstrated the greatest specific surface area (S) of 536.0 m g for 2,4-D adsorption.

View Article and Find Full Text PDF

In this study, we measured 15 common organophosphate flame retardants (OPFRs) in six categories of tea samples across China. OPFRs were found in all the tea samples, with the total concentrations of OPFRs (∑OPFRs) at 3.44-432 ng/g [geometric mean (GM): 17.

View Article and Find Full Text PDF

Prussian blue analogues (PBAs) have been widely studied in aqueous zinc-ion batteries (AZIBs) due to the characteristics of large specific surface area, open aperture, and straightforward synthesis. In this work, vanadium-based PBA nanocubes were firstly prepared using a mild in situ conversion strategy at room temperature without the protection of noble gas. Benefiting from the multiple-redox active sites of V/V, V/V, and Fe/Fe, the cathode exhibited an excellent discharge specific capacity of 200 mAh g in AZIBs, which is much higher than those of other metal-based PBAs nanocubes.

View Article and Find Full Text PDF

Aqueous Zn metal batteries are attracting tremendous interest as promising energy storage systems due to their intrinsic safety and cost-effectiveness. Nevertheless, the reversibility of Zn metal anodes (ZMAs) is hindered by water-induced parasitic reactions and dendrite growth. Herein, a novel hydrated eutectic electrolyte (HEE) consisting of Zn(BF)·xHO and sulfolane (SL) is developed to prevent the side reactions and achieve the outstanding cyclability of ZMAs.

View Article and Find Full Text PDF

With the increase of Cu (II) content, its bioaccumulation becomes a potential pollution to the environment. It is necessary to design an economical and efficient material to remove Cu (II) without causing other environmental hazards. A novel material of alginate composite bead (ALG@NCDs) was synthesized by embedding N-doped carbon dots into pure alginate bead for the adsorption of Cu (II) from wastewater and contaminated soil.

View Article and Find Full Text PDF

Sodium metal batteries (SMBs) are considered as strong alternatives to lithium-ion batteries (LIBs), due to the inherent merits of sodium metal anodes (SMAs) including low redox potential (-2.71 V vs. SHE), high theoretical capacity (1166 mAh g), and abundant resources.

View Article and Find Full Text PDF

A fluorescent probe based on salicylate modified layered double hydroxide (LDH-SA) is presented, enabling the swift sequential detection of Al, fosetyl-Al and glyphosate in aqueous environment. The probe was synthesized using a simple co-precipitation procedure, and its properties and synthesis conditions were thoroughly characterized and optimized. A unique "off-on-off" fluorescent response was observed when the probe sequentially interacted with Al and glyphosate, and the detection method based on this phenomenon was established.

View Article and Find Full Text PDF

Noncentrosymmetric chalcogenides are promising candidates for infrared nonlinear-optical (NLO) crystals, and exploring high-performance ones is a hot topic and challengeable. Herein, the combination of AgQ, InQ, and SiQ (Q = S, Se) units with different S/Se ratios resulted in the discovery of the tetrahedral chalcogenides AgInSiSSe () and AgInSiSSe (). They both crystallize in the monoclinic space group with different local structures.

View Article and Find Full Text PDF

Oxychalcogenides are increasingly attracting wide attention because they contain multiple anions that may combine the advantages of oxides and chalcogenides. In this work, two new pentanary oxythiogermanates, BaMGeOS [M = Ca (), Zn ()], were synthesized by a high-temperature solid-state reaction. They crystallize in the orthorhombic space group , and their structures contain isolated [GeOS] units constructed by one [GeOS] and two [GeOS] tetrahedra that link with M ions to build the {[MGeOS]} chain, representing a new type of oxythiogermanate.

View Article and Find Full Text PDF

Heavy metal pollution has always been a great threat to human health and safety. Compared with other heavy metals, although zirconium ion (Zr(IV)) is equally harmful, due to the lack of research on Zr(IV) in the biological systems and environment, its detection does not seem to have received the attention it deserves. Herein, a rapid visual dual-mode detection (colorimetric and chrominance method) of Zr(IV) based on L-histidine functionalized gold nanoparticles (HIS-AuNPs) has been reported.

View Article and Find Full Text PDF

Chlorinated paraffins (CPs) are hazardous to humans, and dietary intake acts as the primary pathway for human exposure to CPs. Takeout food is popular worldwide, but the presence of CPs in takeout food and its packaging is unclear. In this study, the concentrations and distributions of short- and median-chain CPs (SCCPs and MCCPs, respectively) were measured in 97 samples of four categories of takeout food and 33 samples of three types of takeout packaging.

View Article and Find Full Text PDF

Obtaining compounds with large nonlinear-optical (NLO) coefficients and wide band gaps is challenging due to their competitive requirements for chemical bonds. Herein, the first member with mixed cations on the A site in the A-M-Q or A-Ag-M-Q (A = alkali metal; M = Ga, In; Q = S, Se, Te) family, NaAgGaSe (NAGSe), was obtained by a solid-state reaction. Its structure features [GaSe] tetrahedra built three-dimensional {[GaSe]} network, with Na and Na/Ag cations located at the octahedral cavities.

View Article and Find Full Text PDF

In this study, ginkgo leaves were used as a carbon source to synthesize carbon quantum dots (CQDs) with uniform particle size, high fluorescence (FL) intensity and strong stability, using a hydrothermal method. FL could be quenched by the FL resonance energy transfer effect between CQDs and gold nanoparticles (AuNPs), an important FL quenching agent. The electrostatic attraction between thiosemicarbazone (TSC) and citrate on the surface of AuNPs and the formation of a stable Au-S bond between TSC and AuNPs led to the aggregation of AuNPs and thus weakened the quenching effect on CQDs and partly recovered the FL.

View Article and Find Full Text PDF

As one of the potential candidates of nonlinear-optical (NLO) materials, rare-earth chalcophosphates have demonstrated promising properties. Here, KREPS (RE = Sm, Gd, Tb, Dy) were synthesized using the facile REO-B-S solid-state method. They crystallize with a monoclinic chiral 2 structure, and their layer structures are built by isolated ethane-like PS dimers and RES bicapped trigonal prisms built {[RES]} layers.

View Article and Find Full Text PDF

Soil aggregates are essential functional units involved in soil carbon sequestration, particularly in saline-sodic soils prone to severe carbon loss. In the present study, the distribution of aggregate-associated carbon fractions and their influencing factors were investigated after artificial utilization of saline soil in the Songnen Plain, Northeast China. Physicochemical properties, enzymatic activities, and bacterial communities were measured in various hierarchical aggregates among two natural land-use types (saline wasteland and degraded grassland) and three anthropogenic land-use types (artificial forest, upland field, and paddy field).

View Article and Find Full Text PDF

ConspectusSecond-order nonlinear optical (NLO) materials are currently a hot topic in modern solid-state chemistry and optics because they can produce coherent light by frequency conversion. Noncentrosymmetric (NCS) structure is not only the prerequisite for NLO materials but also a challengeable issue because materials tend to be centrosymmetric (CS) in terms of thermodynamical stability. Among NLO materials, an excellent infrared (IR) candidate should simultaneously meet several strict key conditions including a large NLO coefficient, high laser-induced damage threshold (LIDT), phase-matchable (PM) behavior, and so on.

View Article and Find Full Text PDF

The main goal of this study is to create a CS-CMC-SF aerogel consisting of chitosan sodium carboxymethylcellulose and silk fibroin. The aerogel is designed to remove types of dyes from water while also being environmentally friendly. This innovative adsorbent has been optimized for extracting both cationic and anionic dyes from solutions.

View Article and Find Full Text PDF

Rare-earth (RE) chalcophosphates have been widely studied because of their abundant structures. Here, five new RE selenophosphates, NaREPSe (RE = Y, Sm, Gd-Dy), were synthesized by a facile RE oxide-boron-selenium solid-state route. They crystallize in the triclinic 1̅ space group, featuring three-dimensional (3D) structures constructed by RESe and PSe motifs, different from common 2D RE chalcophosphates A-RE-P-Q (A = alkali metal; Q = S, Se) system.

View Article and Find Full Text PDF

Rice cultivation has been demonstrated to have the ability to improve saline-sodic soil. Whether this human activity can influence the accumulation of soil organic carbon (SOC) in saline-sodic soil remains unclear. In this study, the impact of rice cultivation across different planting durations (1, 5, 10, 27 years and abandoned land) on the carbon (C) levels, derived from plant residues and microbial necromass, were assessed.

View Article and Find Full Text PDF
Article Synopsis
  • - A new infrared nonlinear-optical material, AgInSiSSe, was developed by partially substituting elements in AgInSiS, resulting in improved performance.
  • - The material has a unique three-dimensional structure with helical chains and embedded silver ions, and shows a significantly enhanced nonlinear-optical response, exceeding that of AgGaS.
  • - The increased response is linked to the combined effects of specific tetrahedral structures within the material, showcasing a novel approach to creating high-performance functional materials through partial ion substitution.
View Article and Find Full Text PDF
Article Synopsis
  • Glyphosate, the world's most widely used herbicide, presents residue detection challenges due to its lack of natural fluorescence.
  • A new fluorescence detection method using a luminous covalent organic framework (L-COF) was developed, operating on an "on-off-on" switch mechanism triggered by iron (Fe), without the need for incubation.
  • The method exhibited high accuracy with a correlation coefficient of 0.9978 and successfully detected glyphosate in environmental samples, achieving recovery rates between 87% and 106%.
View Article and Find Full Text PDF