Fall-related injuries (FRIs) are a major cause of hospitalizations among older patients, but identifying them in unstructured clinical notes poses challenges for large-scale research. In this study, we developed and evaluated Natural Language Processing (NLP) models to address this issue. We utilized all available clinical notes from the Mass General Brigham for 2,100 older adults, identifying 154,949 paragraphs of interest through automatic scanning for FRI-related keywords.
View Article and Find Full Text PDFBackground: In intensive care units (ICUs), critically ill patients are monitored with electroencephalography (EEG) to prevent serious brain injury. EEG monitoring is constrained by clinician availability, and EEG interpretation can be subjective and prone to interobserver variability. Automated deep-learning systems for EEG could reduce human bias and accelerate the diagnostic process.
View Article and Find Full Text PDFThe integration of natural language processing (NLP) tools into neurology workflows has the potential to significantly enhance clinical care. However, it is important to address the limitations and risks associated with integrating this new technology. Recent advances in transformer-based NLP algorithms (e.
View Article and Find Full Text PDFObjective: To develop an automated, physiologic metric of immune effector cell-associated neurotoxicity syndrome among patients undergoing chimeric antigen receptor-T cell therapy.
Methods: We conducted a retrospective observational cohort study from 2016 to 2020 at two tertiary care centers among patients receiving chimeric antigen receptor-T cell therapy with a CD19 or B-cell maturation antigen ligand. We determined the daily neurotoxicity grade for each patient during EEG monitoring via chart review and extracted clinical variables and outcomes from the electronic health records.
Background: Epileptiform activity is associated with worse patient outcomes, including increased risk of disability and death. However, the effect of epileptiform activity on neurological outcome is confounded by the feedback between treatment with antiseizure medications and epileptiform activity burden. We aimed to quantify the heterogeneous effects of epileptiform activity with an interpretability-centred approach.
View Article and Find Full Text PDFUnlabelled: The clinical significance of epileptiform abnormalities (EAs) specific to toxic-metabolic encephalopathy (TME) is unknown.
Objectives: To quantify EA burden in patients with TME and its association with neurologic outcomes.
Design Setting And Participant: This is a retrospective study.
Carbon, the human's most reliable fuel type in the past, must be neutralized in this century toward the Paris Agreement temperature goals. Solar power is widely believed a key fossil fuel substitute but suffers from the needs of large space occupation and huge energy storage for peak shaving. Here, we propose a solar network circumnavigating the globe to connecting large-scale desert photovoltaics among continents.
View Article and Find Full Text PDFObjective: Unstructured data present in electronic health records (EHR) are a rich source of medical information; however, their abstraction is labor intensive. Automated EHR phenotyping (AEP) can reduce the need for manual chart review. We present an AEP model that is designed to automatically identify patients diagnosed with epilepsy.
View Article and Find Full Text PDFBackground And Objectives: Seizures (SZs) and other SZ-like patterns of brain activity can harm the brain and contribute to in-hospital death, particularly when prolonged. However, experts qualified to interpret EEG data are scarce. Prior attempts to automate this task have been limited by small or inadequately labeled samples and have not convincingly demonstrated generalizable expert-level performance.
View Article and Find Full Text PDFNeurologic disability level at hospital discharge is an important outcome in many clinical research studies. Outside of clinical trials, neurologic outcomes must typically be extracted by labor intensive manual review of clinical notes in the electronic health record (EHR). To overcome this challenge, we set out to develop a natural language processing (NLP) approach that automatically reads clinical notes to determine neurologic outcomes, to make it possible to conduct larger scale neurologic outcomes studies.
View Article and Find Full Text PDFBackground And Objectives: The validity of brain monitoring using electroencephalography (EEG), particularly to guide care in patients with acute or critical illness, requires that experts can reliably identify seizures and other potentially harmful rhythmic and periodic brain activity, collectively referred to as "ictal-interictal-injury continuum" (IIIC). Previous interrater reliability (IRR) studies are limited by small samples and selection bias. This study was conducted to assess the reliability of experts in identifying IIIC.
View Article and Find Full Text PDFCAR-T cell therapy is an effective cancer therapy for multiple refractory/relapsed hematologic malignancies but is associated with substantial toxicity, including Immune Effector Cell Associated Neurotoxicity Syndrome (ICANS). Improved detection and assessment of ICANS could improve management and allow greater utilization of CAR-T cell therapy, however, an objective, specific biomarker has not been identified. We hypothesized that the severity of ICANS can be quantified based on patterns of abnormal brain activity seen in electroencephalography (EEG) signals.
View Article and Find Full Text PDFJ Neurol Neurosurg Psychiatry
March 2023
Background: Post-traumatic epilepsy (PTE) is a severe complication of traumatic brain injury (TBI). Electroencephalography aids early post-traumatic seizure diagnosis, but its optimal utility for PTE prediction remains unknown. We aim to evaluate the contribution of quantitative electroencephalograms to predict first-year PTE (PTE).
View Article and Find Full Text PDFInt J Environ Res Public Health
August 2022
Urban traffic pollution, which is strongly influenced by the complex urban morphology, has posed a great threat to human health. In this study, we performed a high-resolution simulation of traffic pollution in a typical city block in Baoding, China, based on the Parallelized Large-eddy simulation Model (PALM), to examine the distribution patterns of traffic-related pollutants and explore their relationship with urban morphology. Based on the model results, we conducted a multi-linear regression (MLR) analysis and found that the distribution of air pollutants inside the city block was dominated by both traffic emissions and urban morphology, which explained about 70% of the total variance in spatial distribution of air pollutants.
View Article and Find Full Text PDFObjective: Interictal epileptiform discharges on EEG are integral to diagnosing epilepsy. However, EEGs are interpreted by readers with and without specialty training, and there is no accepted method to assess skill in interpretation. We aimed to develop a test to quantify IED recognition skills.
View Article and Find Full Text PDFBackground: Delirium in hospitalized patients is a syndrome of acute brain dysfunction. Diagnostic (International Classification of Diseases [ICD]) codes are often used in studies using electronic health records (EHRs), but they are inaccurate.
Objective: We sought to develop a more accurate method using natural language processing (NLP) to detect delirium episodes on the basis of unstructured clinical notes.
Objective: Electroencephalography (EEG) is an important tool for neurological outcome prediction after cardiac arrest. However, the complexity of continuous EEG data limits timely and accurate interpretation by clinicians. We develop a deep neural network (DNN) model to leverage complex EEG trends for early and accurate assessment of cardiac arrest coma recovery likelihood.
View Article and Find Full Text PDFObjective: This study was undertaken to determine the dose-response relation between epileptiform activity burden and outcomes in acutely ill patients.
Methods: A single center retrospective analysis was made of 1,967 neurologic, medical, and surgical patients who underwent >16 hours of continuous electroencephalography (EEG) between 2011 and 2017. We developed an artificial intelligence algorithm to annotate 11.
. Prediction of mortality risk in intensive care units (ICU) is an important task. Data-driven methods such as scoring systems, machine learning methods, and deep learning methods have been investigated for a long time.
View Article and Find Full Text PDFPatients with comorbidities are at increased risk for poor outcomes in COVID-19, yet data on patients with prior neurological disease remains limited. Our objective was to determine the odds of critical illness and duration of mechanical ventilation in patients with prior cerebrovascular disease and COVID-19. A observational study of 1,128 consecutive adult patients admitted to an academic center in Boston, Massachusetts, and diagnosed with laboratory-confirmed COVID-19.
View Article and Find Full Text PDFBackground: Medical notes are a rich source of patient data; however, the nature of unstructured text has largely precluded the use of these data for large retrospective analyses. Transforming clinical text into structured data can enable large-scale research studies with electronic health records (EHR) data. Natural language processing (NLP) can be used for text information retrieval, reducing the need for labor-intensive chart review.
View Article and Find Full Text PDFBackground: Evidence suggests that insulin therapy of patients with type 2 diabetes mellitus (T2DM) is frequently discontinued. However, the reasons for discontinuing insulin and factors associated with insulin discontinuation in this patient population are not well understood.
Methods: We conducted a retrospective cohort study of adults with T2DM prescribed insulin between 2010 and 2017 at Partners HealthCare.
J Neurosci Methods
March 2021
Objectives: Seizures and seizure-like electroencephalography (EEG) patterns, collectively referred to as "ictal interictal injury continuum" (IIIC) patterns, are commonly encountered in critically ill patients. Automated detection is important for patient care and to enable research. However, training accurate detectors requires a large labeled dataset.
View Article and Find Full Text PDFBackground: We sought to develop an automatable score to predict hospitalization, critical illness, or death for patients at risk for coronavirus disease 2019 (COVID-19) presenting for urgent care.
Methods: We developed the COVID-19 Acuity Score (CoVA) based on a single-center study of adult outpatients seen in respiratory illness clinics or the emergency department. Data were extracted from the Partners Enterprise Data Warehouse, and split into development (n = 9381, 7 March-2 May) and prospective (n = 2205, 3-14 May) cohorts.
Background: We sought to develop an automatable score to predict hospitalization, critical illness, or death in patients at risk for COVID-19 presenting for urgent care during the Massachusetts outbreak.
Methods: Single-center study of adult outpatients seen in respiratory illness clinics (RICs) or the emergency department (ED), including development (n = 9381, March 7-May 2) and prospective (n = 2205, May 3-14) cohorts. Data was queried from Partners Enterprise Data Warehouse.