Molybdenum disulfide (MoS) is a promising anode for sodium-ion batteries (SIBs) due to its high theoretical capacity and layered structure. However, a poor reversible conversion reaction and a low initial Coulombic efficiency (ICE) limit its practical application. This study systematically investigated the potential of pre-intercalated sodium ions molybdenum disulfide (Na-MoS) as an anode material for SIBs.
View Article and Find Full Text PDFNiFe-based materials, especially NiFe layered double hydroxides (LDHs), are recognized as the most promising non-precious metal electrocatalysts for alkaline oxygen evolution reaction (OER). However, the precisely designed distribution of active sites for enhancing activities is still significantly restricted due to the lack of reasonable modulation strategies. Herein, sulfur doped Ni/Fe gradient-distributed LDH (GD-NiFe LDH/S) is fabricated by facile air-induced strategy at room temperature.
View Article and Find Full Text PDFIn electrochemical advanced oxidation processes (EAOPs), energy consumption cannot be ignored. In this work, Mn-Fe oxide/graphite felt (GF) cathodes were synthesized by in situ reduction and low temperature calcination. The obtained Mn-Fe oxide/GF was used as cathodes to activate peroxymonosulfate (PMS) for atrazine (ATZ) degradation in the EAOPs system.
View Article and Find Full Text PDFThe guest cation preintercalation strategy has been widely adopted to improve the performance of zinc-vanadium batteries. However, existing studies always ignore the deintercalation of guest cations. This work focuses on the severe and universal deintercalation phenomenon and confirms the unaltered capacity after deintercalation, indicating that the capacity improvement mechanism cannot be attributed to the role of guest cations.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2025
A palladium-zinc alloy nanoparticles decorated nitrogen-doped porous carbon catalyst (PdZn-NC) was synthesized and utilized for Suzuki coupling reaction. The alloying palladium (Pd) with zinc (Zn) and pore expanding are realized simultaneously. Density functional theory (DFT) calculations and experimental studies reveal that the alloying Pd with Zn can lower the energy barrier in Suzuki coupling reaction.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Aqueous zinc-ion batteries (AZIBs) are expected to be a promising large-scale energy storage system owing to their intrinsic safety and low cost. Nevertheless, the development of AZIBs is still plagued by the design and fabrication of advanced cathode materials. Herein, the amorphous vanadium pentoxide and hollow porous carbon spheres (AVO-HPCS) hybrid is elaborately designed as AZIBs cathode material by integrating vacuum drying and annealing strategy.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Zinc-air batteries, as one of the emerging areas of interest in the quest for sustainable energy solutions, are hampered by the intrinsically sluggish kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), and still suffer from the issues of low energy density. Herein, we report a MOF-on-MOF-derived electrocatalyst, FeCo@NC-II, designed to efficiently catalyze both ORR (E = 0.907 V) and OER (E = 1.
View Article and Find Full Text PDFHighly active biochar has great application potential in heterogeneous catalysis and adsorptive processes. The complexity of carbonization process makes it difficult to construct target active sites. This work put forward a reactive descriptor based on pyrolysis parameters and intrinsic composition of biomass.
View Article and Find Full Text PDFCoFe bimetallic organic frameworks (CoFe-MOFs) with tunable morphology and electronic structure are synthesized in situ utilizing cobalt hydroxide (Co(OH)) as a semi-sacrificial template and different anionic iron salts as modifying factors in a non-calcined synthesis method. This work defines the impact of three different anionic metallic iron salts (FeCl, Fe(NO), and Fe(SO)) on the morphology of MOF materials and their resulting oxygen evolution reaction (OER) catalytic activity. Employing ferric chloride (FeCl) as the metallic iron source, heterostructured electrocatalysts (BN-CoFe-MOF) with nanoparticles decorated nanoneedle tips are obtained, exhibiting a low overpotential (230 mV at 10 mA cm) and a Tafel slope of 105.
View Article and Find Full Text PDFIn this study, a series of Fe-based materials are facilely synthesized using MIL-88A and melamine as precursors. Changing the mass ratio of melamine and MIL-88A could tune the coating layers of generated zero-valent iron (Fe) particles from FeC to FeN facilely. Compared to Fe/FeN@NC sample, Fe/FeC@NC exhibits better catalytic activity and stability to degrade carbamazepine (CBZ) with peroxymonosulfate (PMS) as oxidant.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2024
Vanadium-based oxides, known for their high capacity and low cost, have garnered significant attention as promising cathode candidates in aqueous zinc-ion batteries. Nonetheless, their poor rate performance and limited durability in aqueous electrolytes present a challenge to the realistic implementation of vanadium-based aqueous zinc-ion batteries. Here, we synthesized nitrogen-doped VO@C (N-VO@N-C) via ammonia treatment of VO@C derived from vanadium-based metal-organic framework (V-MOF), aiming to achieve outstanding rate and cycling performance.
View Article and Find Full Text PDFCurrently, aqueous zinc ion batteries (AZIBs) have grown to be a good choice for large-scale energy storage systems due to their high theoretical specific capacity, low redox potential, low cost, and non-toxicity of the aqueous electrolyte. However, it is still challenging to obtain high specific capacity and stability suitable cathodes. Herein, hierarchical self-supporting potassium ammonium vanadate@MXene (KNVO@MXene) hybrid films were prepared by vacuum filtration method.
View Article and Find Full Text PDFDesigning iron-based catalysts for Fenton-like reactions with peroxymonosulfate (PMS) as oxidants have attracted growing attentions. Herein, pyrite FeS supported on carbon spheres (FeS@C) is synthesized by a facile low-temperature method. The FeS@C/PMS system can degrade carbamazepine (CBZ) effectively in a wide pH range.
View Article and Find Full Text PDFConstructing a stable and robust solid electrolyte interphase (SEI) has a decisive influence on the charge/discharge kinetics of lithium-ion batteries (LIBs), especially for silicon-based anodes which generate repeated destruction and regeneration of unstable SEI films. Herein, a facile way is proposed to fabricate an artificial SEI layer composed of lithiophilic chitosan on the surface of two-dimensional siloxene, which has aroused wide attention as an advanced anode for LIBs due to its special characteristics. The optimized chitosan-modified siloxene anode exhibits an excellent reversible cyclic stability of about 672.
View Article and Find Full Text PDFRecently, aqueous zinc-ion batteries with conversion mechanisms have received wide attention in energy storage systems on account of excellent specific capacity, high power density, and energy density. Unfortunately, some characteristics of cathode material, zinc anode, and electrolyte still limit the development of aqueous zinc-ion batteries possessing conversion mechanism. Consequently, this paper provides a detailed summary of the development for numerous aqueous zinc-based batteries: zinc-sulfur (Zn-S) batteries, zinc-selenium (Zn-Se) batteries, zinc-tellurium (Zn-Te) batteries, zinc-iodine (Zn-I) batteries, and zinc-bromine (Zn-Br) batteries.
View Article and Find Full Text PDFMXenes have demonstrated significant potential in electrochemical energy storage, particularly in supercapacitors, owing to their exceptional properties. The surface terminal groups of MXene play a pivotal role in pseudocapacitive mechanism. Considering the hindered electrolyte ion transport caused by -F terminal groups and the limited ion binding sites associated with -O terminal groups, this study proposes a novel strategy of replacing -F with -N terminal groups.
View Article and Find Full Text PDFCapacitive deionization (CDI) is perceived as a promising technology for freshwater production owing to its environmentally friendly nature and low energy consumption. To date, the development of high-performance electrode materials represents the foremost challenge for CDI technology. In this work, the porous bismuthene/MXene (P-Bi-ene/MXene) heterostructure was synthesized using a simple interfacial self-assembly method with two-dimensional (2D) bismuthene and TiCT MXene.
View Article and Find Full Text PDFBimetallic composites (Fe@CoFeO) with zero-valent Fe as the core encapsulated by CoFeO layers are synthesized by a coprecipitation-calcination method, which are applied to activate PMS for the degradation of bisphenol A (BPA). Enhanced activity of Fe@CoFeO is achieved with very fast degradation rate (k = 0.5737 min).
View Article and Find Full Text PDFAqueous zinc-ion batteries (AZIBs) are considered to be one of the most promising devices for large-scale energy storage systems owing to their high theoretical capacity, environmental friendliness, and safety. However, the ionic intercalation or surface redox mechanisms in conventional cathode materials generally result in unsatisfactory capacities. Conversion-type aqueous zinc-tellurium (Zn-Te) batteries have recently gained widespread attention owing to their high theoretical specific capacities.
View Article and Find Full Text PDFAqueous zinc ion batteries (AZIBs) have gained extensive attention due to the numerous advantages of zinc, such as low redox potential, high abundance, low cost as well as high theoretical specific capacity. However, the development of AZIBs is still hampered due to the lack of suitable cathodes. In this work, the freestanding defective ammonium vanadate@MXene (d-NVO@MXene) hybrid film was synthesized by simple vacuum filtration strategy.
View Article and Find Full Text PDFJ Hazard Mater
September 2023
Emerging contaminants can be removed effectively in heterogeneous Fenton-like systems. Currently, catalyst activity and contaminant removal mechanisms have been studied extensively in Fenton-like systems. However, a systematic summary was lacking.
View Article and Find Full Text PDFCapacitive deionization (CDI) is regarded as a promising desalination technology owing to its low cost and environmental friendliness. However, the lack of high-performance electrode materials remains a challenge in CDI. Herein, the hierarchical bismuth-embedded carbon (Bi@C) hybrid with strong interface coupling was prepared through facile solvothermal and annealing strategy.
View Article and Find Full Text PDFDeveloping cost-effective Pt-based electrocatalysts for the hydrogen evolution reaction (HER) is highly urgent. Herein, we report novel electrocatalysts with individually dispersed Pt active sites and tunable Pt-Ni interaction decorated on carbon-wrapped nanotube frameworks (Pt/Ni-DA). Pt/Ni-DA exhibits superior HER performance at low Pt concentrations with an ultralow overpotential of 18 mV at 10 mA cm and an ultrahigh mass activity of 2.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2023
Compared with traditional Fenton reaction, peroxymonosulfate based advanced oxidation processes (PMS-AOPs) are more effective to remove the organic pollutants in wastewater in a wider pH range. Herein, selective loading of MnO on monoclinic BiVO (110) or (040) facets were achieved by photo-deposition method with addition of different Mn precursors and electron/hole trapping agents. MnO has good chemical catalysis activity for PMS activation, which can also enhance photogenerated charge separation, thus leading to enhanced activities than naked BiVO.
View Article and Find Full Text PDF