Publications by authors named "WenBin Ye"

The prevalence of childhood obesity is rising globally, with some obese children progressing to develop metabolic syndrome (MS). However, the specific differences between these groups remain unclear. To investigate the differences in gut microbiota, we conducted physiological and biochemical assessments, alongside 16S rRNA sequencing, in a cohort of 32 children from Southeastern China, which included 4 normal-weight children, 5 with mild obesity, 9 with moderate obesity, 9 with severe obesity, and 5 with metabolic syndrome.

View Article and Find Full Text PDF

Irisin, an exercise-induced myokine, is known to be able to regulate bone metabolism. However, the underlying mechanisms regarding the effects of irisin on senile osteoporosis have not been fully elucidated. Here, we demonstrated that irisin can inhibit bone mass loss and bone microarchitecture alteration in senile osteoporosis mouse model.

View Article and Find Full Text PDF

Doping and carbon encapsulation modifications have been proven to be effective methods for enhancing the lithium storage performance of batteries. The hydrothermal method and ball milling are commonly used methods for material synthesis. In this study, a composite anode material rich in carbon nanotubes (CNTs) conductive tubular network connection and encapsulation of SnO-MoS@CNTs (SMC) was synthesized by combining these two methods.

View Article and Find Full Text PDF

Objective: Sarcopenia is a gradually advancing systemic disorder affecting skeletal muscles, primarily distinguished by diminished muscle mass and functional decline. As of present, a universally accepted diagnostic criterion for sarcopenia has yet to be established. From the perspective of the constitution theory in traditional Chinese medicine (TCM), the Yin-deficiency constitution is believed to have a significant correlation with the development of sarcopenia.

View Article and Find Full Text PDF

Objective: Sarcopenia is a geriatric syndrome that occurs with age and is characterized by a gradual decline in muscle mass, power, and functionality. It serves as a prominent contributor to frailty, disability, and mortality among older individuals. Currently, no standardized global guidelines exist for the diagnosis of sarcopenia.

View Article and Find Full Text PDF

This work presents an energy-efficient ECG processor designed for Cardiac Arrhythmia Classification. The processor integrates a pre-processing and neural network accelerator, achieved through algorithm-hardware co-design to optimize hardware resources. We propose a lightweight two-stage neural network architecture, where the first stage includes discrete wavelet transformation and an ultra-low-parameter multilayer perceptron (MLP) network, and the second stage utilizes group convolution and channel shuffle.

View Article and Find Full Text PDF

The Genome Aggregation Database (gnomAD), widely recognized as the gold-standard reference map of human genetic variation, has largely overlooked tandem repeat (TR) expansions, despite the fact that TRs constitute ∼6% of our genome and are linked to over 50 human diseases. Here, we introduce the TR-gnomAD (https://wlcb.oit.

View Article and Find Full Text PDF

Childhood obesity not only has a negative impact on a child's health but is also a significant risk factor for adult obesity and related metabolic disorders, making it a major global public health concern. Recent studies have revealed the crucial role of gut microbiota in the occurrence and development of obesity, in addition to genetic and lifestyle factors. In this study, we recruited 19 normal-weight children and 47 children with varying degrees of obesity.

View Article and Find Full Text PDF

Motivation: Alternative polyadenylation (APA) is a widespread post-transcriptional regulatory mechanism across all eukaryotes. With the accumulation of genome-wide APA sites, especially those with single-cell resolution, it is imperative to develop easy-to-use visualization tools to guide APA analysis.

Results: We developed an R package called vizAPA for visualizing APA dynamics from bulk and single-cell data.

View Article and Find Full Text PDF

Nuclear clearance and cytoplasmic aggregation of the RNA-binding protein TDP-43 are observed in many neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and fronto- temporal dementia (FTD). Although TDP-43 dysregulation of splicing has emerged as a key event in these diseases, TDP-43 can also regulate polyadenylation; yet, this has not been adequately studied. Here, we applied the dynamic analysis of polyadenylation from RNA-seq (DaPars) tool to ALS/FTD transcriptome datasets, and report extensive alternative polyadenylation (APA) upon TDP-43 alteration in ALS/FTD cell models and postmortem ALS/FTD neuronal nuclei.

View Article and Find Full Text PDF

To address the problem that traditional spectral clustering algorithms cannot obtain the complete structural information of networks, this paper proposes a spectral clustering community detection algorithm, PMIK-SC, based on the point-wise mutual information (PMI) graph kernel. The kernel is constructed according to the point-wise mutual information between nodes, which is then used as a proximity matrix to reconstruct the network and obtain the symmetric normalized Laplacian matrix. Finally, the network is partitioned by the eigendecomposition and eigenvector clustering of the Laplacian matrix.

View Article and Find Full Text PDF

Summary: Cell-free methylated DNA immunoprecipitation and high-throughput sequencing (cfMeDIP-seq) has emerged as a promising liquid biopsy technology to detect cancers and monitor treatments. While several bioinformatics tools for DNA methylation analysis have been adapted for cfMeDIP-seq data, an end-to-end pipeline and quality control framework specifically for this data type is still lacking. Here, we present the MEDIPIPE, which provides a one-stop solution for cfMeDIP-seq data quality control, methylation quantification, and sample aggregation.

View Article and Find Full Text PDF

Background: Sarcopenia is an age-related progressive skeletal muscle disorder involving the loss of muscle mass or strength and physiological function. Efficient and precise AI algorithms may play a significant role in the diagnosis of sarcopenia. In this study, we aimed to develop a machine learning model for sarcopenia diagnosis using clinical characteristics and laboratory indicators of aging cohorts.

View Article and Find Full Text PDF

High-salt stress continues to challenge the growth and survival of many plants. Alternative polyadenylation (APA) produces mRNAs with different 3'-untranslated regions (3' UTRs) to regulate gene expression at the post-transcriptional level. However, the roles of alternative 3' UTRs in response to salt stress remain elusive.

View Article and Find Full Text PDF

Metastatic prostate cancer remains a major clinical challenge and metastatic lesions are highly heterogeneous and difficult to biopsy. Liquid biopsy provides opportunities to gain insights into the underlying biology. Here, using the highly sensitive enrichment-based sequencing technology, we provide analysis of 60 and 175 plasma DNA methylomes from patients with localized and metastatic prostate cancer, respectively.

View Article and Find Full Text PDF

Unlabelled: Analysis of DNA methylation is a valuable tool to understand disease progression and is increasingly being used to create diagnostic and prognostic clinical biomarkers. While conversion of cytosine to 5-methylcytosine (5mC) commonly results in transcriptional repression, further conversion to 5-hydroxymethylcytosine (5hmC) is associated with transcriptional activation. Here we perform the first study integrating whole-genome 5hmC with DNA, 5mC, and transcriptome sequencing in clinical samples of benign, localized, and advanced prostate cancer.

View Article and Find Full Text PDF

Alternative polyadenylation (APA) plays important roles in modulating mRNA stability, translation, and subcellular localization, and contributes extensively to shaping eukaryotic transcriptome complexity and proteome diversity. Identification of poly(A) sites (pAs) on a genome-wide scale is a critical step toward understanding the underlying mechanism of APA-mediated gene regulation. A number of established computational tools have been proposed to predict pAs from diverse genomic data.

View Article and Find Full Text PDF

Estradiol (E) has been proven to be effective in treating perimenopausal depression (PD); however, the downstream signaling pathways have not been fully elucidated. Transient receptor potential channels 6 (TRPC6) plays a vital role in promoting neuronal development and the formation of excitatory synapses. At present, we found that the serum levels of E and brain-derived neurotrophic factor (BDNF) declined significantly in the women with PD compared to perimenopausal women, which was accompanied by a clear reduction in TRPC6 levels.

View Article and Find Full Text PDF

Mutations in SPOP E3 ligase gene are reportedly associated with genome-wide DNA hypermethylation in prostate cancer (PCa) although the underlying mechanisms remain elusive. Here, we demonstrate that SPOP binds and promotes polyubiquitination and degradation of histone methyltransferase and DNMT interactor GLP. SPOP mutation induces stabilization of GLP and its partner protein G9a and aberrant upregulation of global DNA hypermethylation in cultured PCa cells and primary PCa specimens.

View Article and Find Full Text PDF

Alternative polyadenylation (APA) is a widespread regulatory mechanism of transcript diversification in eukaryotes, which is increasingly recognized as an important layer for eukaryotic gene expression. Recent studies based on single-cell RNA-seq (scRNA-seq) have revealed cell-to-cell heterogeneity in APA usage and APA dynamics across different cell types in various tissues, biological processes and diseases. However, currently available APA databases were all collected from bulk 3'-seq and/or RNA-seq data, and no existing database has provided APA information at single-cell resolution.

View Article and Find Full Text PDF

The dynamic choice of different polyadenylation sites in a gene is referred to as alternative polyadenylation, which functions in many important biological processes. Large-scale messenger RNA 3' end sequencing has revealed that cleavage sites for polyadenylation are presented with microheterogeneity. To date, the conventional determination of polyadenylation site clusters is subjective and arbitrary, leading to inaccurate annotations.

View Article and Find Full Text PDF

Motivation: Alternative polyadenylation (APA) has been widely recognized as a widespread mechanism modulated dynamically. Studies based on 3' end sequencing and/or RNA-seq have profiled poly(A) sites in various species with diverse pipelines, yet no unified and easy-to-use toolkit is available for comprehensive APA analyses.

Results: We developed an R package called movAPA for modeling and visualization of dynamics of alternative polyadenylation across biological samples.

View Article and Find Full Text PDF
Article Synopsis
  • - Alternative polyadenylation (APA) plays a key role in generating mRNA diversity, impacting how genes are expressed and regulated in cells, but existing detection methods struggle with accuracy and require prior genome knowledge.
  • - Researchers developed a new tool named scAPAtrap that can accurately identify poly(A) sites across the entire genome in single cells using 3' tag-based RNA-sequencing data, even in regions not previously annotated.
  • - scAPAtrap outperforms existing methods like scAPA and Sierra, offering improved accuracy and sensitivity for detecting poly(A) sites, making it useful for studying gene expression variations in different cell types.
View Article and Find Full Text PDF