Triclosan (TCS), a hydrophobic antibacterial agent, is extensive application in daily life. Despite a low biodegradability rate, its hydrophobicity results in its accumulation in waste-activated sludge (WAS) during domestic and industrial wastewater treatment. While anaerobic digestion is the foremost strategy for WAS treatment, limited research has explored the interphase migration behavior and impacts of TCS on WAS degradation during anaerobic digestion.
View Article and Find Full Text PDFBiotechnology for wastewater treatment is mainstream and effective depending upon microbial redox reactions to eliminate diverse contaminants and ensure aquatic ecological health. However, refractory organic nitrogen compounds (RONCs, e.g.
View Article and Find Full Text PDFEnergy recovery from low-strength wastewater through anaerobic methanogenesis is constrained by limited substrate availability. The development of efficient methanogenic communities is critical but challenging. Here we develop a strategy to acclimate methanogenic communities using conductive carrier (CC), electrical stress (ES), and Acid Orange 7 (AO7) in a modified biofilter.
View Article and Find Full Text PDFIntelligent control of wastewater treatment plants (WWTPs) has the potential to reduce energy consumption and greenhouse gas emissions significantly. Machine learning (ML) provides a promising solution to handle the increasing amount and complexity of generated data. However, relationships between the features of wastewater datasets are generally inconspicuous, which hinders the application of artificial intelligence (AI) in WWTPs intelligent control.
View Article and Find Full Text PDFIn recent years, biological sulfur (bio-S) was employed in sulfur autotrophic denitrification (SAD) in which autotrophic Thiobacillus denitrificans and heterotrophic Stenotrophomonas maltophilia played a key role. The growth pattern of T.denitrificans and S.
View Article and Find Full Text PDFHydrodynamics played an important role in the design and operation of bioreactors for wastewater treatment. In this work, an up-flow anaerobic hybrid bioreactor built-in with fixed bio-carriers was designed and optimized using computational fluid dynamics (CFD) simulation. The results indicated that the flow regime involving with vortex and dead zone was greatly affected by the positions of water inlet and bio-carrier modules.
View Article and Find Full Text PDFHybrid microbial electrolysis cells-anaerobic digestion (MEC-AD) was proved to increase methane productivity and methane yield of waste activated sludge (WAS) by establishing direct interspecies electron transfer method and enriching functional microorganisms. This review first summarized the pretreatment methods of WAS for MEC-AD and then reviewed the reactor configurations, operation parameters, and the economic benefit of MEC-AD. Furthermore, the enhancement mechanisms of MEC-AD were reviewed based on the analysis of thermodynamics and microbial community.
View Article and Find Full Text PDFThe performance of anaerobic digestion is significantly governed by the concentration of volatile fatty acids (VFAs). Though the titration and near-infrared spectroscopy have been used to measure the VFAs in the digester, there is still lack of the establishment of on-line monitoring of VFAs in practical application. An effective quantification method based on mid-infrared (MIR) spectroscopy was developed, and used to measure the concentrations of VFAs in the anaerobic bioreactor nondestructively in parallel.
View Article and Find Full Text PDFWaste activated sludge (WAS), as the byproducts of wastewater treatment plants, has been greatly produced. With high cost and environmental risk of WAS disposal, to explore a low-cost and environment-friendly technology has been a great challenge. Considering that WAS is a collection of organic matters, anaerobic fermentation has been selected as a sustainable way to simultaneously recover resources and reduce environmental pollution.
View Article and Find Full Text PDFTo recover resource from waste activated sludge (WAS) is of great significance. This study proposed a promising way, i.e.
View Article and Find Full Text PDFQuaternary ammonium compounds have gained widespread attention due to their extensive enrichment in waste activated sludge (WAS) and potentially adverse effect to anaerobes. This study selected benzalkonium chlorides (BACs) as model to reveal the responses of anaerobic digestion of WAS to long-term stress of BACs. Results showed that the solubilization enhancement of WAS contributed by BACs was the acceleration of cell lysis, rather than the disruption of extracellular polymeric substances, and the accumulation improvement of short chain fatty acids (SCFAs) attributed to hydrolysis improvement and methanogenesis inhibition at either medium -or high level of BACs.
View Article and Find Full Text PDFThe plastic products have large consumption over last decades, resulting in a serious microplastics (MPs) pollution. Specially, the main removal way of MPs from wastewater is to transfer MPs from liquid to solid phase, leading to its enrichment in waste activated sludge (WAS). Anaerobic digestion has been served as the most potential technique to achieve both resource recovery and sludge reduction, herein this review provides current information on occurrence, effect, and fate of MPs in anaerobic digestion of WAS.
View Article and Find Full Text PDFBioresour Technol
February 2021
Biochar was utilized to intensify constructed wetland (CW) for further organic and nitrogen removal from secondary wastewater. Four sets of non-aerated biochar amended vertical flow CW (VFCW) were developed to investigate the synergistic effects of biochar and microbes on pollutant removal. Results showed that the average COD and nitrogen removal efficiencies of VFCW1 (with 1% w/w biochar with microbe and plants) achieved 89.
View Article and Find Full Text PDFThis study was conducted to investigate the effects of residual ferric ions (FI), released from iron or its oxides for wastewater or waste activated sludge (WAS) treatment, on anaerobic digestion of WAS. Herein it was found that the anaerobic digestion process was greatly affected by FI dosages as well as FI distributions. The responses of performance and microorganism suggested that a low FI (e.
View Article and Find Full Text PDFBiologically synthesized palladium nanoparticles (bio-Pd) have attracted considerable interest as promising green catalysts for environmental remediation. However, the mechanisms by which microorganisms produce bio-Pd remain unclear. In the present study, we investigated the roles of Shewanella oneidensis MR-1 and its NADH dehydrogenases and hydrogenases (HydA and HyaB) in bio-Pd production using formate as the electron donor.
View Article and Find Full Text PDFBioelectrochemical systems (BESs) have been studied extensively during the past decades owing primarily to their versatility and potential in addressing the water-energy-resource nexus. In stark contrast to the significant advancements that have been made in developing innovative processes for pollution control and bioresource/bioenergy recovery, minimal progress has been achieved in demonstrating the feasibility of BESs in scaled-up applications. This lack of scaled-up demonstration could be ascribed to the absence of suitable electrode modules (EMs) engineered for large-scale application.
View Article and Find Full Text PDFAdding alkaline into an anaerobic waste activated sludge (WAS) fermentation with thermophilic bacteria pretreatment could efficiently improve short-chain fatty acids (SCFAs) accumulation to 3550 ± 120 mg COD/L. The acidification rate in combined test was 21.2%, while that was 15.
View Article and Find Full Text PDFAn increasing interest is devoted to combined microbial electrolysis cell-anaerobic digestion (MEC-AD) system which could convert waste activated sludge into biogas. In this study series tests were initially conducted to study the effect of alkaline pretreatment on AD system and the results showed that alkaline pretreatment could promote the dissolution of organic matters in the sludge and thus improve the methane production. Then, the methane production in combined MEC-AD system fed with alkaline-pretreated sludge was investigated.
View Article and Find Full Text PDFCompared to autotrophic and heterotrophic denitrification process, the Integrated autotrophic and heterotrophic denitrification (IAHD) has wider foreground of applications in the condition where the organic carbon, nitrate and inorganic sulfur compounds usually co-exist in the actual wastewaters. As the most well-known IAHD process, the denitrifying sulfide removal (DSR) could simultaneously convert sulfide, nitrate and organic carbon into sulfur, dinitrogen gas and carbon dioxide, respectively. Thus, systematical metabolic functions and contributions of autotrophic and heterotrophic denitrifiers to the IAHD-DSR performance became an problem demanding to be promptly studied.
View Article and Find Full Text PDF