Publications by authors named "Wen-zhong Zhou"

Background & Aims: Primary hyperparathyroidism(PHPT) has been evolving into a milder asymptomatic disease. No study has assessed the association between famine exposure and such a shift. We aim to explore the effects of China's Great Famine exposure on the changing pattern of PHPT phenotypes.

View Article and Find Full Text PDF

Background: X-ray repair cross-complementary 5 (XRCC5) and 6 (XRCC6) are critical for DNA repair. Few studies have assessed their association with breast cancer risk, and related gene-environment interactions remain poorly understood. This study aimed to determine the influence of XRCC5/6 polymorphisms on breast cancer risk, and their interactions with cigarette smoking, alcohol consumption, and sleep satisfaction.

View Article and Find Full Text PDF

This study aimed to investigate risk factors associated with breast cancer among Han Chinese women in northern and eastern China. A matched case-control study involving 1489 patients with breast cancer and 1489 controls was conducted across 21 hospitals in 11 provinces in China, from April 2012 to April 2013. We developed a structured questionnaire to record information from face-to-face interviews with participants.

View Article and Find Full Text PDF

A florfenicol-loaded solid lipid nanoparticle (FFC-SLN) suspension was prepared by hot homogenisation and ultrasonic technique. The suspension was characterised for its release profile, stability, toxicity, and the physicochemical properties of the nanoparticles. Antibacterial activity of the suspension was evaluated in vitro and in vivo.

View Article and Find Full Text PDF

The level of total adiponectin, a mixture of different adiponectin forms, has been reported associated with breast cancer risk with inconsistent results. Whether the different forms play different roles in breast cancer risk prediction is unclear. To examine this, we measured total and high molecular weight (HMW) adiponectin in a case-control study (1167 sets).

View Article and Find Full Text PDF

Three tilmicosin-loaded hydrogenated castor oil nanoparticle (TMS-HCO-NP) suspensions of different particle sizes were prepared with different polyvinyl alcohol surfactant concentrations using a hot homogenization and ultrasonic technique. The in vitro release, in vitro antibacterial activity, mammalian cytotoxicity, acute toxicity in mice, and stability study were conducted to evaluate the characteristics of the suspensions. The in vitro tilmicosin release rate, antibacterial activity, mammalian cytotoxicity, acute toxicity in mice, and stability of the suspensions were evaluated.

View Article and Find Full Text PDF

This work aims to develop norfloxacin-loaded solid lipid nanoparticle (NFX-SLN) suspensions as a novel formulation. NFX-SLN suspensions were prepared by hot homogenization and ultrasonic technique. The stability of the suspensions was studied after stored at 4°C and room temperature from 3 to 9 months.

View Article and Find Full Text PDF

The purpose of this study was to use solid lipid nanoparticles (SLN) to improve the pharmacological activity of ofloxacin. Ofloxacin-loaded SLN were prepared using palmitic acid as lipid matrix and poly vinyl alcohol (PVA) as emulsifier by a hot homogenization and ultrasonication method. The physicochemical characteristics of SLN were investigated by optical microscope, scanning electron microscopy, and photon correlation spectroscopy.

View Article and Find Full Text PDF

Enrofloxacin-loaded solid lipid nanoparticles (SLN) were prepared using fatty acids (tetradecanoic acid, palmitic acid, stearic acid) as lipid matrix by hot homogenization and ultrasonication method. The effect of fatty acids on the characteristics and pharmacokinetics of the SLN were investigated. The results showed that the encapsulation efficiency and loading capacity of nanoparticles varied with fatty acids in the order of stearic acid>palmitic acid>tetradecanoic acid.

View Article and Find Full Text PDF

Aim: The purpose of this study was to formulate praziquantel (PZQ)-loaded hydrogenated castor oil (HCO) solid lipid nanoparticles (SLN) to enhance the bioavailability and prolong the systemic circulation of the drug.

Materials & Methods: PZQ was encapsulated into HCO nanoparticles by a hot homogenization and ultrasonication method. The physicochemical characteristics of SLN were investigated by optical microscope, scanning electron microscopy and photon correlation spectroscopy.

View Article and Find Full Text PDF

Our previous work demonstrated that lactic/glycolic acid copolymer (PLGA) was an efficient emulsifier for the primary w/o emulsion in the formulation of protein-loaded solid lipid nanoparticles (SLN) by w/o/w double emulsion-solvent evaporation technique. In this work, the effect of PLGA composition on the emulsifying activity was studied with PLGA of different lactic/glycolic acid ratios (90/10, 75/25, 50/50). The results demonstrated that the glycolic acid monomer ratio significantly affected the emulsifying activity of PLGA.

View Article and Find Full Text PDF

Most proteins are hydrophilic and poorly encapsulated into the hydrophobic matrix of solid lipid nanoparticles (SLN). To solve this problem, poly (lactic-co-glycolic acid) (PLGA) was utilized as a lipophilic polymeric emulsifier to prepare hydrophilic protein-loaded SLN by w/o/w double emulsion and solvent evaporation techniques. Hydrogenated castor oil (HCO) was used as a lipid matrix and bovine serum albumin (BSA), lysozyme and insulin were used as model proteins to investigate the effect of PLGA on the formulation of the SLN.

View Article and Find Full Text PDF

Background: Prolonged exposure of pancreatic beta-cells to fatty acids increases basal insulin secretion but inhibits glucose-stimulated insulin secretion. Rosiglitazone is a new antidiabetic agent of the thiazolidinediones. However, the relationship between thiazolidinediones and insulin secretion is highly controversial.

View Article and Find Full Text PDF

Nanoparticles formulated from biodegradable polymers such as poly (lactic acid) and poly (D,L-lactide-co-glycolide) (PLGA) are being extensively investigated as non-viral gene delivery systems due to their sustained release characteristics and biocompatibility. PLGA nanoparticles for DNA delivery are mainly formulated using an emulsion-solvent evaporation technique. However, this formulation procedure results in the formation of particles with heterogeneous size distribution.

View Article and Find Full Text PDF

The endo-lysosomal escape of drug carriers is crucial to enhancing the efficacy of their macromolecular payload, especially the payloads that are susceptible to lysosomal degradation. Current vectors that enable the endo-lysosomal escape of macromolecules such as DNA are limited by their toxicity and by their ability to carry only limited classes of therapeutic agents. In this paper, we report the rapid (<10 min) endo-lysosomal escape of biodegradable nanoparticles (NPs) formulated from the copolymers of poly(DL-lactide-co-glycolide) (PLGA).

View Article and Find Full Text PDF