Publications by authors named "Wen-ju Gu"

We investigate the force measurement sensitivity in a squeezed dissipative optomechanics within the free-mass regime under the influence of shot noise (SN) from the photon number fluctuations, laser phase noise from the pump laser, thermal noise from the environment, and optical losses from outcoupling and detection inefficiencies. Generally, squeezed light could generate a reduced SN on the squeezed quadrature and an enlarged quantum backaction noise (QBA) due to the antisqueezed conjugate quadrature. With an appropriate choice of phase angle in homodyne detection, QBA is cancellable, leading to an exponentially improved measurement sensitivity for the SN-dominated regime.

View Article and Find Full Text PDF

We discuss the generation of strong stationary mechanical squeezing and entanglement in the modulated two-and three-mode optomechanics. Following the reservoir engineering scheme, the beam-splitter and parametric optomechanical interactions can be simultaneously achieved through appropriately choosing the modulation frequency on mechanical motion, which is essential to strong squeezing and entanglement. In the two-mode modulated optomechanics, squeezing is tunable by the relative ratio of parametric and beam-splitter couplings, and also robust to thermal noise due to the simultaneously optically induced cooling process.

View Article and Find Full Text PDF

We investigate corrections on the cooling limit of high-order Lamb-Dicke (LD) parameters in the double electromagnetically induced transparency (EIT) cooling scheme. Via utilizing quantum interferences, the single-phonon heating mechanism vanishes and the system evolves to a double dark state, from which we will obtain the mechanical occupation on the single-phonon excitation state. In addition, the further correction induced by two-phonon heating transitions is included to achieve a more accurate cooling limit.

View Article and Find Full Text PDF

When a trichromatic laser field is applied to a cavity optomechanical system within the single-photon strong-coupling regime, we find that the motion of mirror can evolve into a dark state such that the cavity field mode cannot absorb energy from the external field. Via tuning three components of the pumping field to be resonant to the carrier, red-sideband and blue-sideband transitions in the displaced representation respectively, the state of mirror motion can exhibit non-classical properties, such as that in the Lamb-Dicke limit, the state evolves into a squeezed coherent state, and beyond the limit, the state can become a squeezed non-Gaussian state.

View Article and Find Full Text PDF

We investigate the generation of squeezed state of the mirror motion in a dissipative optomechanical system driven with a strong laser field accompanied with two periodically-modulated lights. Using the density operator approach we calculate the variances of quantum fluctuations around the classical orbits. Both the numerical and analytical results predict that the squeezed state of the mirror motion around its ground state is achievable.

View Article and Find Full Text PDF

We propose a cooling scheme for a trapped atom using the phenomenon of cavity-induced double electromagnetically induced transparency (EIT), where the atom comprising of four levels in tripod configuration is confined inside a high-finesse optical cavity. By exploiting one cavity-induced EIT, which involves one cavity photon and two laser photons, carrier transition can be eliminated due to the quantum destructive interference of excitation paths. Heating process originated from blue-sideband transition mediated by cavity field can also be prohibited due to the destructive quantum interference with the additional transition between the additional ground state and the excited state.

View Article and Find Full Text PDF