Publications by authors named "Wen-bin Ye"

This work presents an energy-efficient ECG processor designed for Cardiac Arrhythmia Classification. The processor integrates a pre-processing and neural network accelerator, achieved through algorithm-hardware co-design to optimize hardware resources. We propose a lightweight two-stage neural network architecture, where the first stage includes discrete wavelet transformation and an ultra-low-parameter multilayer perceptron (MLP) network, and the second stage utilizes group convolution and channel shuffle.

View Article and Find Full Text PDF

Defects in bones can be caused by a plethora of reasons, such as trauma or illness, and in many cases, it poses challenges to the current treatment approaches for bone repair. With increasing demand of bone bioengineering in tissue transplant, there is a need to source for sustainable solutions to induce bone regeneration. Polymeric biomaterials have been identified as a promising approach due to its excellent biocompatibility and controllable biodegradability.

View Article and Find Full Text PDF

Chronic and degenerative diseases are the main causes of death in the aging population worldwide. These diseases are currently maintained using long term administration of conventional drugs which are not curative and reduce the life quality of patients. It is urgent to develop new therapeutic approaches for the treatment of these diseases.

View Article and Find Full Text PDF

Pro-inflammatory cytokine-induced chondrocyte apoptosis is a primary cause of cartilage destruction in the progression of rheumatoid arthritis (RA). Advanced oxidation protein products (AOPPs), a novel pro-inflammatory mediator, have been confirmed to accumulate in patients with RA. However, the effect of AOPPs accumulation on chondrocyte apoptosis and the associated cellular mechanisms remains unclear.

View Article and Find Full Text PDF

Objective: Advanced oxidation protein products (AOPPs), a marker of oxidative stress, are prevalent in many kinds of disorders. Osteoarthritis (OA), mainly resulting from the regression of cartilage, chronic inflammation of the synovium and the subchondral bone remodeling. Although the inflammatory response of AOPPs on fibroblast-like synoviocytes (FLSs) were reported, the effect of AOPPs on cartilage and synovial in vivo remains unclear.

View Article and Find Full Text PDF

Advanced oxidation protein products (AOPPs) are novel markers of oxidation-mediated protein damage, and accumulation of AOPPs is involved in many pathophysiological conditions. Our previous studies demonstrated that the serum level of AOPPs negatively correlated with the age-related change in bone mineral density (BMD) in rats and that AOPPs inhibited rat osteoblast-like cell proliferation and differentiation in vitro. However, whether AOPPs are involved in senile osteoporosis is still largely unknown.

View Article and Find Full Text PDF

Background: Advanced oxidation protein products (AOPPs), a marker of oxidative stress, are prevalent in many kinds of disorders. Rheumatoid arthritis (RA), mainly resulting from the dysfunction of fibroblast-like synoviocytes (FLSs), is related to oxidative stress. Although the increased levels of AOPPs in RA patients were reported, the effect of AOPPs on FLSs function still remains unclear.

View Article and Find Full Text PDF

Purpose: Abnormal growth of vertebral body growth plate (VBGP) is considered as one of the etiologic factors in the adolescent idiopathic scoliosis (AIS). It was well-known that melatonin was correlated with the emergence and development of AIS. This study aimed to investigate the effect of melatonin on rat VBGP chondrocytes in vitro.

View Article and Find Full Text PDF

Vascular endothelial growth factor (VEGF) is up-regulated in the vast majority of human tumors. The up-regulation of VEGF not only plays important roles in tumor angiogenesis, but also provides a target for tumor treatment with small interfering RNA (siRNA) that targets VEGF; however, it is unclear whether a quite high up-regulation of VEGF will affect the efficiency of RNA interference strategies targeting VEGF. A high level expression of VEGF was found in CNE cells from a nasopharyngeal carcinoma cell line.

View Article and Find Full Text PDF