Publications by authors named "Wen-Yun Yang"

Prediction of human physical traits and demographic information from genomic data challenges privacy and data deidentification in personalized medicine. To explore the current capabilities of phenotype-based genomic identification, we applied whole-genome sequencing, detailed phenotyping, and statistical modeling to predict biometric traits in a cohort of 1,061 participants of diverse ancestry. Individually, for a large fraction of the traits, their predictive accuracy beyond ancestry and demographic information is limited.

View Article and Find Full Text PDF

Although genome-wide association studies (GWASs) have discovered numerous novel genetic variants associated with many complex traits and diseases, those genetic variants typically explain only a small fraction of phenotypic variance. Factors that account for phenotypic variance include environmental factors and gene-by-environment interactions (GEIs). Recently, several studies have conducted genome-wide gene-by-environment association analyses and demonstrated important roles of GEIs in complex traits.

View Article and Find Full Text PDF

Motivation: Although genome-wide association studies (GWAS) have identified thousands of variants associated with common diseases and complex traits, only a handful of these variants are validated to be causal. We consider 'causal variants' as variants which are responsible for the association signal at a locus. As opposed to association studies that benefit from linkage disequilibrium (LD), the main challenge in identifying causal variants at associated loci lies in distinguishing among the many closely correlated variants due to LD.

View Article and Find Full Text PDF

Ever since its introduction, the haplotype copy model has proven to be one of the most successful approaches for modeling genetic variation in human populations, with applications ranging from ancestry inference to genotype phasing and imputation. Motivated by coalescent theory, this approach assumes that any chromosome (haplotype) can be modeled as a mosaic of segments copied from a set of chromosomes sampled from the same population. At the core of the model is the assumption that any chromosome from the sample is equally likely to contribute a priori to the copying process.

View Article and Find Full Text PDF

Ancestry analysis from genetic data plays a critical role in studies of human disease and evolution. Recent work has introduced explicit models for the geographic distribution of genetic variation and has shown that such explicit models yield superior accuracy in ancestry inference over nonmodel-based methods. Here we extend such work to introduce a method that models admixture between ancestors from multiple sources across a geographic continuum.

View Article and Find Full Text PDF

Standard statistical approaches for prioritization of variants for functional testing in fine-mapping studies either use marginal association statistics or estimate posterior probabilities for variants to be causal under simplifying assumptions. Here, we present a probabilistic framework that integrates association strength with functional genomic annotation data to improve accuracy in selecting plausible causal variants for functional validation. A key feature of our approach is that it empirically estimates the contribution of each functional annotation to the trait of interest directly from summary association statistics while allowing for multiple causal variants at any risk locus.

View Article and Find Full Text PDF

Motivation: Haplotypes, defined as the sequence of alleles on one chromosome, are crucial for many genetic analyses. As experimental determination of haplotypes is extremely expensive, haplotypes are traditionally inferred using computational approaches from genotype data, i.e.

View Article and Find Full Text PDF

Copy number variations (CNVs) are widely known to be an important mediator for diseases and traits. The development of high-throughput sequencing (HTS) technologies has provided great opportunities to identify CNV regions in mammalian genomes. In a typical experiment, millions of short reads obtained from a genome of interest are mapped to a reference genome.

View Article and Find Full Text PDF

Characterizing genetic diversity within and between populations has broad applications in studies of human disease and evolution. We propose a new approach, spatial ancestry analysis, for the modeling of genotypes in two- or three-dimensional space. In spatial ancestry analysis (SPA), we explicitly model the spatial distribution of each SNP by assigning an allele frequency as a continuous function in geographic space.

View Article and Find Full Text PDF