Rationale And Objectives: This study aims to develop and validate an ultrasoundbased habitat imaging and peritumoral radiomics model for predicting high-risk capsule characteristics for recurrence of pleomorphic adenoma (PA) of the parotid gland while also exploring the optimal range of peritumoral region.
Materials And Methods: Retrospective analysis was conducted on 325 patients (171 in training set, 74 in validation set and 80 in testing set) diagnosed with PA at two medical centers. Univariate and multivariate logistic regression analyses were performed to identify clinical risk factors.
Objective: The pathological classification and imaging manifestation of parotid gland tumors are complex, while accurate preoperative identification plays a crucial role in clinical management and prognosis assessment. This study aims to construct and compare the performance of clinical models, traditional radiomics models, deep learning (DL) models, and deep learning radiomics (DLR) models based on ultrasound (US) images in differentiating between benign parotid gland tumors (BPGTs) and malignant parotid gland tumors (MPGTs).
Methods: Retrospective analysis was conducted on 526 patients with confirmed PGTs after surgery, who were randomly divided into a training set and a testing set in the ratio of 7:3.
Background: Many studies have reported the association between ambient temperature and mortality from cardiovascular disease (CVD). However, the health effects of humidity are still unclear, much less the combined effects of temperature and humidity. In this study, we used humidex to quantify the effect of temperature and humidity combined on CVD mortality.
View Article and Find Full Text PDFWe are motivated by the real challenges presented in a human-robot system to develop new designs that are efficient at data level and with performance guarantees, such as stability and optimality at system level. Existing approximate/adaptive dynamic programming (ADP) results that consider system performance theoretically are not readily providing practically useful learning control algorithms for this problem, and reinforcement learning (RL) algorithms that address the issue of data efficiency usually do not have performance guarantees for the controlled system. This study fills these important voids by introducing innovative features to the policy iteration algorithm.
View Article and Find Full Text PDFRobotic prostheses deliver greater function than passive prostheses, but we face the challenge of tuning a large number of control parameters in order to personalize the device for individual amputee users. This problem is not easily solved by traditional control designs or the latest robotic technology. Reinforcement learning (RL) is naturally appealing.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
September 2017
This brief presents a novel application of adaptive dynamic programming (ADP) for optimal adaptive control of powered lower limb prostheses, a type of wearable robots to assist the motor function of the limb amputees. Current control of these robotic devices typically relies on finite state impedance control (FS-IC), which lacks adaptability to the user's physical condition. As a result, joint impedance settings are often customized manually and heuristically in clinics, which greatly hinder the wide use of these advanced medical devices.
View Article and Find Full Text PDF