Publications by authors named "Wen-Yuan Fan"

To defuse risks of antibiotic residues in effluent to achieve safe wastewater reuse, direct hydrolysis of the functional group responsible for the antibacterial activity, such as the of β-lactam ring in β-lactam antibiotics, has been recognized as an efficient and cost-effective strategy. However, the instability of natural hydrolases limits their use in treating antibiotic-containing wastewater. Herein, inspired by the active site of natural hydrolase, a Ce-based nanohydrolase was created for rapid hydrolysis of β-lactam antibiotics.

View Article and Find Full Text PDF

Phosphonates, as a kind of important organic phosphorus in wastewater, should be removed in terms of their environmental risks. Unfortunately, traditional biological treatments fail to remove phosphonates effectively due to their biological inertness. The reported advanced oxidation processes (AOPs) usually require pH adjustment or coupling with other technologies to achieve high removal efficiency.

View Article and Find Full Text PDF

To date, eutrophication becomes a great concern of vulnerable aquatic systems. Dissolved organic phosphorus (DOP) discharged from wastewater treatment plant (WWTP) holds a large source of phosphorus in receiving water. However, due to the complexity of DOP, their variation and fate in WWTP remain unknown at the molecular level, and are always overlooked.

View Article and Find Full Text PDF

Free DNA bases are widely present in the environments, and can be utilized by bacteria for their nucleic acids synthesis or as nutrition sources. In sunlit natural waters, these free bases probably undergo photodegradation which would change the bioavailable bases contents. Though the photodegradation of DNA has been investigated, the photodegradation behaviors of free bases may be quite different from those of DNA-confined bases in consideration of their different chemical environments.

View Article and Find Full Text PDF

In nature, many microorganisms show resistance to toxic selenite by reducing selenite to non-soluble and low toxic elemental selenium. Extracellular polymeric substances (EPS), a high-molecular-weight biopolymers originated from microbial metabolism, contain many reducing groups and can induce reductive transformation of pollutants. However, the roles of EPS and its redox state in reductive detoxification or reduction removal of selenite, respectively, remain unknown yet.

View Article and Find Full Text PDF

Extracellular DNA (eDNA), which is derived from lysis or secretion of cells, is ubiquitous in various environments and crucial for gene dissemination, bacterial metabolism, biofilm integrity, and aquatic monitoring. However, these processes are largely influenced by damage to eDNA. Photodamage to eDNA, one of the most important types of DNA damage in natural waters, thus far remains unclear.

View Article and Find Full Text PDF

Extracellular antibiotic resistance genes (eARGs) contribute to antibiotic resistance, and as such, they pose a serious threat to human health. eARGs, regarded as an emerging contaminant, have been widely detected in various bodies of water. Degradation greatly weakens their distribution potential and environmental risks.

View Article and Find Full Text PDF

Organic phosphorus (OP), one of the main forms of phosphorus in effluent from biological wastewater treatment plants, may contribute to the bioavailable phosphorus pool as well as water eutrophication. However, little is known about the photomineralization of OP or the possible impacts on the phosphorus cycle in water bodies. Herein, the photomineralization of effluent OP was investigated.

View Article and Find Full Text PDF

A straightforward and efficient synthesis of sesterstatins 4 and 5 is reported, in which the reductive Heck cyclisation was employed as the key step for constructing the D ring.

View Article and Find Full Text PDF