Publications by authors named "Wen-Yu He"

Article Synopsis
  • Van der Waals (vdW) crystals with strong spin-orbit coupling are key for discovering unique 2D superconductors, where new pairing states arise from the combination of various factors like SOC and crystal structure.
  • The study highlights a mirror-symmetry protected Ising pairing state in a heterostructure of SnSe and TaSe, where the arrangement of the lattice helps minimize interference from certain pairing mechanisms.
  • The findings indicate that these vdW heterostructures can enhance the critical temperature under specific magnetic fields, which does not occur in other multilayer configurations due to a loss of mirror symmetry.
View Article and Find Full Text PDF
Article Synopsis
  • Quantum materials known as topological insulators can transport information without energy loss, making them promising for advanced computing technologies, but creating practical devices remains difficult.
  • Researchers have developed a ferroelectric Chern insulator device that combines unique materials to allow for multiple distinct states and switching capabilities, using voltage pulses and magnetic fields.
  • This new technology demonstrates potential for noise-resistant computing, specifically in creating efficient neural networks, paving the way for enhanced topological quantum computing applications.
View Article and Find Full Text PDF

Quantum spin liquids (QSLs) are in a quantum disordered state that is highly entangled and has fractional excitations. As a highly sought-after state of matter, QSLs were predicted to host spinon excitations and to arise in frustrated spin systems with large quantum fluctuations. Here we report on the experimental observation and theoretical modeling of QSL signatures in monolayer 1T-NbSe, which is a newly emerging two-dimensional material that exhibits both charge-density-wave (CDW) and correlated insulating behaviors.

View Article and Find Full Text PDF

Recently, quantum anomalous Hall effect with spontaneous ferromagnetism was observed in twisted bilayer graphenes (TBG) near 3/4 filling. Importantly, it was observed that an extremely small current can switch the direction of the magnetization. This offers the prospect of realizing low energy dissipation magnetic memories.

View Article and Find Full Text PDF

The grouting quality of tendon ducts is very important for post-tensioning technology in order to protect the prestressing reinforcement from environmental corrosion and to make a smooth stress distribution. Unfortunately, various grouting defects occur in practice, and there is no efficient method to evaluate grouting compactness yet. In this study, a method based on wavelet packet transform (WPT) and Bayes classifier was proposed to evaluate grouting conditions using stress waves generated and received by piezoelectric transducers.

View Article and Find Full Text PDF

Two-dimensional transition metal dichalcogenides MX (M = W, Mo, Nb, and X = Te, Se, S) with strong spin-orbit coupling possess plenty of novel physics including superconductivity. Due to the Ising spin-orbit coupling, monolayer NbSe and gated MoS of 2H structure can realize the Ising superconductivity, which manifests itself with in-plane upper critical field far exceeding Pauli paramagnetic limit. Surprisingly, we find that a few-layer 1T structure MoTe also exhibits an in-plane upper critical field which goes beyond the Pauli paramagnetic limit.

View Article and Find Full Text PDF

1T-TaS_{2} is a cluster Mott insulator on the triangular lattice with 13 Ta atoms forming a star of David cluster as the unit cell. We derive a two-dimensional XXZ spin-1/2 model with a four-spin ring exchange term to describe the effective low energy physics of a monolayer 1T-TaS_{2}, where the effective spin-1/2 degrees of freedom arises from the Kramers degenerate spin-orbital states on each star of David. A large scale density matrix renormalization group simulation is further performed on this effective model and we find a gapless spin liquid phase with a spinon Fermi surface at a moderate to large strength region of the four-spin ring exchange term.

View Article and Find Full Text PDF
Article Synopsis
  • Time reversal and spatial inversion are important symmetries in BCS superconductivity; breaking inversion symmetry can lead to unconventional superconducting behaviors.
  • Researchers have identified 2D NbSe as a non-centrosymmetric superconductor with unique spin-orbit coupling, allowing them to observe a continuous transition from superconducting to normal metal states under high magnetic fields.
  • The findings suggest that 2D NbSe has potential for further exploration of novel superconducting phenomena and innovative device applications, such as topological superconductivity.
View Article and Find Full Text PDF

We show that Dirac points can emerge in photonic crystals possessing mirror symmetry when band gap closes. The mechanism of generating Dirac points is discussed in a two-dimensional photonic square lattice, in which four Dirac points split out naturally after the touching of two bands with different parity. The emergence of such nodal points, characterized by vortex structure in momentum space, is attributed to the unavoidable band crossing protected by mirror symmetry.

View Article and Find Full Text PDF

The perfect transmission in a graphene monolayer and the perfect reflection in a Bernal graphene bilayer for electrons incident in the normal direction of a potential barrier are viewed as two incarnations of the Klein paradox. Here we show a new and unique incarnation of the Klein paradox. Owing to the different chiralities of the quasiparticles involved, the chiral fermions in a twisted graphene bilayer show an adjustable probability of chiral tunneling for normal incidence: they can be changed from perfect tunneling to partial or perfect reflection, or vice versa, by controlling either the height of the barrier or the incident energy.

View Article and Find Full Text PDF

It is well established that strain and geometry could affect the band structure of graphene monolayer dramatically. Here we study the evolution of local electronic properties of a twisted graphene bilayer induced by a strain and a high curvature, which are found to strongly affect the local band structures of the twisted graphene bilayer. The energy difference of the two low-energy van Hove singularities decreases with increasing lattice deformation and the states condensed into well-defined pseudo-Landau levels, which mimic the quantization of massive chiral fermions in a magnetic field of about 100 T, along a graphene wrinkle.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionik22nriqt371a1odt7qv9ugn6r1koth7): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once