Publications by authors named "Wen-Yang Hsu"

Deploying distributed fiber-optic sensor (DFOS) technology to gather environmental parameters over expansive areas is an essential monitoring strategy in the context of comprehensive searches for anomalous places. This study utilizes a single temperature measurement channel within a commercial Raman-based distributed temperature sensing (RDTS) interrogator and divides it into two separate, uncorrelated paths to enable spatial duplex temperature measurements. The distinction between temperature events corresponding to each path in the dual separate path (DSP) in RDTS can be achieved when temperature events are concurrently occurring in the DSP.

View Article and Find Full Text PDF

This Letter demonstrates the successful use of free-space optics (FSO) as a transition channel for an air segment in transmitting Raman backscattering signals for distributed temperature sensing (DTS). A barrier-free air segment link shaped by an FSO is part of the Raman-based DTS (RDTS) fiber optic transmission route. For this plan, the FSO enables delivery of the RDTS's pulse with the low-loss transmission over the air segment while also returning to the RDTS the varied Raman backscattered signals from the probing temperature variations for signal interpretation.

View Article and Find Full Text PDF

The current demand for high-channel-count neural-recording interfaces calls for more area- and power-efficient readout architectures that do not compromise other electrical performances. In this paper, we present a miniature 128-channel neural recording integrated circuit (NRIC) for the simultaneous acquisition of local field potentials (LFPs) and action potentials (APs), which can achieve a very good compromise between area, power, noise, input range and electrode DC offset cancellation. An AC-coupled 1-order digitally-intensive architecture is proposed to achieve this compromise and to leverage the advantages of a highly-scaled technology node.

View Article and Find Full Text PDF

Micron-sized patterned sapphire substrates (PSS) are used to improve the performance of GaN-based light-emitting diodes (LEDs). However, the growth of GaN is initiated not only from the bottom c-plane but also from the sidewall of the micron-sized patterns. Therefore, the coalescence of these GaN crystals creates irregular voids.

View Article and Find Full Text PDF

Safety and energy efficiency are two major concerns for implantable neural stimulators. This paper presents a novel high-frequency, switched capacitor (HFSC) stimulation and active charge balancing scheme, which achieves high energy efficiency and well-controlled stimulation charge in the presence of large electrode impedance variations. Furthermore, the HFSC can be implemented in a compact size without any external component to simultaneously enable multichannel stimulation by deploying multiple stimulators.

View Article and Find Full Text PDF

Detection of tumor-related proteins with high specificity and sensitivity is important for early diagnosis and prognosis of cancers. While protein sensors based on antibodies are not easy to keep for a long time, aptamers (single-stranded DNA) are found to be a good alternative for recognizing tumor-related protein specifically. This study investigates the feasibility of employing aptamers to recognize the platelet-derived growth factor (PDGF) specifically and subsequently triggering rolling circle amplification (RCA) of DNAs on extended-gate field-effect transistors (EGFETs) to enhance the sensitivity.

View Article and Find Full Text PDF