Publications by authors named "Wen-Yang Chang"

This study proposes an optical panel with full multitouch using the patterned indium tin oxide (ITO) and an algorithm matrix to avoid ghost points. The patterned ITOs include the virtual high and low impedances. The algorithm matrix with two configurations of equivalent circuits for array scanning is derived using the voltage divider rule.

View Article and Find Full Text PDF

Spectral properties of an electrically tunable one-dimensional photonic crystal infiltrated with a twisted-nematic liquid crystal (PC/TN) are investigated. Two mesogenic materials with dissimilar optical anisotropies are examined for constituting the central defect layer. With the TN alignment of the defect layer embedded in the dielectric multilayers, the defect modes not only shift with the applied voltage but also switch between two major modes when the linear polarization angle of the incident light is altered.

View Article and Find Full Text PDF

The interface and nanoindentation mechanisms of alkanethiol self-assembled monolayers (SAMs) chemisorbed on a gold surface are investigated using molecular dynamics simulation. The mechanisms include the nanoindentation depths, the workpiece temperatures, the numbers of SAM layers, the length of united-atoms per chain, and the shapes of the indenters. The simulation results show that the disorder and the plastic mobility of SAM chains increased with increasing indentation depth.

View Article and Find Full Text PDF

The interface dynamics and nanoscratched mechanisms of alkanethiol self-assembled monolayers (SAM) chemisorbed on a gold surface are investigated using molecular dynamics simulation. The characteristic mechanisms mainly include the nanoscratched depths, the workpiece temperatures, the scratched speed, the SAM chain lengths, and the shapes of the indenters. The simulation results show that the disorder and the plastic mobility of SAM structures increased with increasing nanoscratched depth.

View Article and Find Full Text PDF

Flexible electronics sensors are designed and fabricated for tactile multiscanning and large area applications. The algorithm matrix is derived for multiscanning switch of tactile sensing. The thixotropy materials, bump, and resistance material are printed on the polyimide substrate.

View Article and Find Full Text PDF

Flexible electronics sensors for tactile applications in multi-touch sensing and large scale manufacturing were designed and fabricated. The sensors are based on polyimide substrates, with thixotropy materials used to print organic resistances and a bump on the top polyimide layer. The gap between the bottom electrode layer and the resistance layer provides a buffer distance to reduce erroneous contact during large bending.

View Article and Find Full Text PDF

The sensitivity of the humidity sensor based on hybrid thin films of nanostructure TiO2/SnO2with Pt dopant was successfully increased. The humidity-sensitive materials, TiO2/SnO3, were prepared by sol gel technology. The microstructure of the sensing film after calcination was investigated by the Field Emission gun Scanning Electron Microscopy (FESEM) and revealed that the metal oxide hybrid had about 10 nm grain size.

View Article and Find Full Text PDF

In this study, we provided a comprehensive methodology for designing and integrating miniature system in the biosensor application. In general, the network analyzer is commonly used for acoustic wave sensor measurement. However, it is remarkably inconvenient for portable use.

View Article and Find Full Text PDF