Publications by authors named "Wen-Ya Wu"

The substitution of semiconductor quantum dots (QDs) by a small number of transition-metal ions with magnetic properties gives rise to magnetic-doped semiconductors. With a balance of optical and magnetic properties, these magnetic semiconductors are widely used in spintronics, bioimaging and magnetic resonance imaging (MRI) applications. To facilitate their usage in bio-applications, it is critical to synthesize water-soluble magnetic QDs with a stabilized structure while maintaining their optical and magnetic properties.

View Article and Find Full Text PDF

Background: Da Vinci Robotics-assisted total mesorectal excision (TME) surgery for rectal cancer is becoming more widely used. There is no strong evidence that robotic-assisted surgery and laparoscopic surgery have similar outcomes in elderly patients with TME for rectal cancer.

Aim: To determine the improved oncological outcomes and short-term efficacy of robot-assisted surgery in elderly patients undergoing TME surgery.

View Article and Find Full Text PDF

This review explores the potential of using different types of ash, namely fly ash, biomass ash, and coal ash etc., as mediums for CO capture and sequestration. The diverse origins of these ash types - municipal waste, organic biomass, and coal combustion - impart unique physicochemical properties that influence their suitability and efficiency in CO absorption.

View Article and Find Full Text PDF

Polyethylene (PE), a highly prevalent non-biodegradable polymer in the field of plastics, presents a waste management issue. To alleviate this issue, bio-based PE (bio-PE), derived from renewable resources like corn and sugarcane, offers an environmentally friendly alternative. This review discusses various production methods of bio-PE, including fermentation, gasification, and catalytic conversion of biomass.

View Article and Find Full Text PDF

Semiconductor quantum dots (QDs) have been used in a variety of applications ranging from optoelectronics to biodiagnostic fields, primarily due to their size dependent fluorescent nature. CdSe nanocrystals (NCs) are generally synthesized via a hot injection method in an organic solvent. However, such NCs are insoluble in water and therefore preclude the direct usage toward biological systems.

View Article and Find Full Text PDF

The presence of toxic organic pollutants in aquatic environments poses significant threats to human health and global ecosystems. Photocatalysis that enables in situ production and activation of H O presents a promising approach for pollutant removal; however, the processes of H O production and activation potentially compete for active sites and charge carriers on the photocatalyst surface, leading to limited catalytic performance. Herein, a hierarchical 2D/2D heterojunction nanosphere composed of ultrathin BiOBr and BiOI nanosheets (BiOBr/BiOI) is developed by a one-pot microwave-assisted synthesis to achieve in situ H O production and activation for efficient photocatalytic wastewater treatment.

View Article and Find Full Text PDF

Atomically-thin monolayer WS is a promising channel material for next-generation Moore's nanoelectronics owing to its high theoretical room temperature electron mobility and immunity to short channel effect. The high photoluminescence (PL) quantum yield of the monolayer WS also makes it highly promising for future high-performance optoelectronics. However, the difficulty in strictly growing monolayer WS, due to its non-self-limiting growth mechanism, may hinder its industrial development because of the uncontrollable growth kinetics in attaining the high uniformity in thickness and property on the wafer-scale.

View Article and Find Full Text PDF
Article Synopsis
  • Platinum-based metal catalysts are key in catalyzing reactions, especially in fuel cells, where their performance depends on the atomic structure at the nanoscale.
  • The study reports the synthesis of Ag/Pt and Ag/Pd core/shell nanocrystals and explores how oxygen plasma treatment affects their structure, leading to a phenomenon known as the Kirkendall effect.
  • The findings suggest that the treatment creates nanochannels in the metal shell, allowing silver atoms to diffuse out, eventually forming hollow nanocrystals while some cores remain intact under specific conditions.
View Article and Find Full Text PDF

Piezo-assisted photocatalysis (namely, piezo-photocatalysis), which utilizes mechanical energy to modulate spatial and energy distribution of photogenerated charge carriers, presents a promising strategy for molecule activation and reactive oxygen species (ROS) generation toward applications such as environmental remediation. However, similarly to photocatalysis, piezo-photocatalysis also suffers from inferior charge separation and utilization efficiency. Herein, a Z-scheme heterojunction composed of single Ag atoms-anchored polymeric carbon nitride (Ag-PCN) and SnO is developed for efficient charge carrier transfer/separation both within the catalyst and between the catalyst and surface oxygen molecules (O ).

View Article and Find Full Text PDF

Phase Change Materials (PCMs) are utilized to regulate temperature and store thermal energy in various industries such as infrastructure, electronics, solar power, and more. However, they face several limitations, such as leakage, poor thermal properties, incompatibility, as well as high flammability. Polyethylene (PE) is one of many polymers explored to enhance the desirable properties of PCMs, due to their versatile properties such as high strength, durability, chemical resistance, and low cost.

View Article and Find Full Text PDF

The oriented attachment (OA) of 0D semiconductor nanocrystals into 1D and 2D nanostructures with unique properties is useful for the fabrication of quantum confined nanomaterials that are otherwise difficult to produce by direct synthesis. Given that the OA of 1D nanocrystals such as nanorods generally produces linear chains, rod-couple structures, or clustered columns, linking them in a facet-specific manner to produce 2D structures is challenging. Here, we report that 1D CuS nanorods undergo etching on exposure to hexylphosphonic acid under mild heating, which results in an increased curvature and a reduction in surface ligands at those sites.

View Article and Find Full Text PDF

Branched heterostructured semiconductor nanoparticles such as core seeded tetrapods and octapods offer properties not seen in their spherical core-shell counterparts, but are challenging to synthesize with a large diversity of branch numbers heterogeneous nucleation and growth processes alone. This work describes a process to facet-link matchstick-like AgS-tipped ZnS nanorods their AgS tips, producing branched AgS-centered ZnS nanoparticles such as bipods, tripods, and in general multipods with 4 to 16 ZnS arms as a function of reaction time. The angle between nanorods in the bipods and tripods is found to be close to 120°, resulting in unexpected bent and trigonal planar geometry, respectively.

View Article and Find Full Text PDF

Liquid-based thermochromics can be incorporated into an arbitrarily shaped container and provide a visual map of the temperature changes within its volume. However, photochemical degradation, narrow temperature range of operation, and the need for stringent encapsulation processes are challenges that can limit their widespread use. Here, a unique solution-based thermochromic comprising ultrathin colloidal Sb Se nanowires in an amine-thiol mixture is introduced.

View Article and Find Full Text PDF

Here, we describe a protocol that allows for shape-anisotropic cadmium chalcogenide nanocrystals (NCs), such as nanorods (NRs) and tetrapods (TPs), to be covalently and site-specifically linked via their end facets, resulting in polymer-like linear or branched chains. The linking procedure begins with a cation-exchange process in which the end facets of the cadmium chalcogenide NCs are first converted to silver chalcogenide. This is followed by the selective removal of ligands at their surface.

View Article and Find Full Text PDF

Nonclassical growth mechanisms such as self-assembly and oriented attachment are effective ways to build complex nanostructures from simpler ones. In the latter case, the nanoparticle components are electronically coupled; however, control over the attachment between nanoparticles is highly challenging and generally requires a delicate balance between dipole-, ligand-, and solvent-based interactions. To this end, we perform incomplete cation exchange with Ag (Cu) on CdSe-seeded CdS nanorods and tetrapods to exclusively convert their tips into small AgS (CuS) domains.

View Article and Find Full Text PDF

Although multiphoton-pumped lasing from a solution of chromophores is important in the emerging fields of nonlinear optofluidics and bio-photonics, conventionally used organic dyes are often rendered unsuitable because of relatively small multiphoton absorption cross-sections and low photostability. Here, we demonstrate highly photostable, ultralow-threshold multiphoton-pumped biexcitonic lasing from a solution of colloidal CdSe/CdS nanoplatelets within a cuvette-based Fabry-Pérot optical resonator. We find that colloidal nanoplatelets surprisingly exhibit an optimal lateral size that minimizes lasing threshold.

View Article and Find Full Text PDF

Two unique heterometallic {Ln4Co} coordination polymers with infinite Ln4(OH)4]n(8n+) chains have been successfully assembled, which represent the first example of heterometallic Ln-Co coordination polymers containing infinite lanthanide hydroxide chains.

View Article and Find Full Text PDF

We synthesized colloidal InP/ZnS seeded CdS tetrapods by harnessing the structural stability of the InP/ZnS seed nanocrystals at the high reaction temperatures needed to grow the CdS arms. Because of an unexpected Type II band alignment at the interface of the InP/ZnS core and CdS arms that enhanced the occurrence of radiative excitonic recombination in CdS, these tetrapods were found to be capable of exhibiting highly efficient multiexcitonic dual wavelength emission of equal intensity at spectrally distinct wavelengths of ∼485 and ∼675 nm. Additionally, the Type II InP/ZnS seeded CdS tetrapods displayed a wider range of pump-dependent emission color-tunability (from red to white to blue) within the context of a CIE 1931 chromaticity diagram and possessed higher photostability due to suppressed multiexcitonic Auger recombination when compared to conventional Type I CdSe seeded CdS tetrapods.

View Article and Find Full Text PDF

The rhizome of Alpinia officinarum is a widely used Chinese herbal medicine. The essential oil in A. officinarum rhizome is mainly composed of 1, 8-cineole and other monoterpenes, as the major bioactive ingredients.

View Article and Find Full Text PDF

A sensitive colorimetric detection for biomolecules based on aptamer was described. Poly(dimethylsiloxane) (PDMS)-gold nanoparticles (AuNPs) composite film was used as a platform for immobilizing anti-target aptamer. PDMS-AuNPs composite film only covered with aptamer showed high inhibiting ability towards silver reduction, after target molecules were conjugated on the modified surface, the catalytic efficiency of AuNPs for silver reduction was increased.

View Article and Find Full Text PDF

This paper described a convenient semiquantitative method for colorimetric detection of protein with self-calibration integrated on the test strip. Hydrophilic paper was employed as microfluidic device for running colorimetric assay, tree-shaped design was developed to ensure uniform microfluidic flow for multiple branches. The approach was validated with bovine serum albumin (BSA) colorimetric detection, and colorimetric results observed by naked eyes were consistent with that from apparatus.

View Article and Find Full Text PDF

A novel method for low electroosmotic flow (EOF) rates measurement by tilting microchip which based upon the hydrostatic pressure conception and sampling zone method is described. Sampling zone could be detected in the tilting microchip but not in non-tilting one due to the hydrostatic pressure driven. The method is fulfilled to calculate low EOF rates by detecting the liquid flow velocity driven by hydrostatic pressure, and difference between the apparent mobility of the migrating analyte in two modes is caused by the effect of hydrostatic pressure.

View Article and Find Full Text PDF