Environ Sci Pollut Res Int
November 2021
The settlement of non-spherical particles, such as propagules of plants and natural sediments, is commonly observed in riverine ecosystems. The settling process is influenced by both particle properties (size, density, and shape) and fluid properties (density and viscosity). Therefore, the drag law of non-spherical particles is a function of both particle Reynolds number and particle shape.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2019
Scalar transport in an open channel with irreversible first-order absorption boundaries is investigated through random walk particle tracking method (RWPT). We provide the pre-asymptotic behavior of scalar transport as well as a comparison with existing asymptotic formulations. The RWPT method is based on the development of the probability that a particle is absorbed at the boundary.
View Article and Find Full Text PDFThe need for operational models describing the friction factor f in streams remains undisputed given its utility across a plethora of hydrological and hydraulic applications concerned with shallow inertial flows. For small-scale roughness elements uniformly covering the wetted parameter of a wide channel, the Darcy-Weisbach f = 8(u/U) is widely used at very high Reynolds numbers, where u is friction velocity related to the surface kinematic stress, U = Q/A is bulk velocity, Q is flow rate, and A is cross-sectional area orthogonal to the flow direction. In natural streams, the presence of vegetation introduces additional complications to quantifying f, the subject of the present work.
View Article and Find Full Text PDF