Cold stress is one of the main factors limiting growth and development in pepper. Calcineurin B-like proteins (CBLs) are specific calcium sensors with non-canonical EF-hands to capture calcium signals, and interact with CBL-interacting protein kinases (CIPKs) in the regulation of various stresses. In this study, we isolated a cold-induced CIPK gene from pepper named CaCIPK13, which encodes a protein of 487 amino acids.
View Article and Find Full Text PDFDrought stress is a major agricultural problem restricting the growth, development, and productivity of plants. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) significantly influence the plant response to different stresses. However, the molecular mechanisms of CBL-CIPK in the drought stress response of pepper are still unknown.
View Article and Find Full Text PDFHarsh environmental factors have continuous negative effects on plant growth and development, leading to metabolic disruption and reduced plant productivity and quality. However, filamentation temperature-sensitive H protease (FtsH) plays a prominent role in helping plants to cope with these negative impacts. In the current study, we examined the transcriptional regulation of the gene in the R9 thermo-tolerant pepper ( L.
View Article and Find Full Text PDFHeat shock transcription factor (Hsf) plays an important role in regulating plant thermotolerance. The function and regulatory mechanism of in heat stress tolerance of pepper have not been reported yet. In this study, phylogenetic tree and sequence analyses confirmed that is a class A Hsf.
View Article and Find Full Text PDFDue to the present scenario of climate change, plants have to evolve strategies to survive and perform under a plethora of biotic and abiotic stresses, which restrict plant productivity. Maintenance of plant protein functional conformation and preventing non-native proteins from aggregation, which leads to metabolic disruption, are of prime importance. Plant heat shock proteins (HSPs), as chaperones, play a pivotal role in conferring biotic and abiotic stress tolerance.
View Article and Find Full Text PDFBackground: Calcineurin B-like proteins (CBLs) are major Ca sensors that interact with CBL-interacting protein kinases (CIPKs) to regulate growth and development in plants. The CBL-CIPK network is involved in stress response, yet little is understood on how CBL-CIPK function in pepper (Capsicum annuum L.), a staple vegetable crop that is threatened by biotic and abiotic stressors.
View Article and Find Full Text PDFHSP60 gene family in pepper was analyzed through bioinformatics along with transcriptional regulation against multiple abiotic and hormonal stresses. Furthermore, the knockdown of CaHSP60-6 increased sensitivity to heat stress. The 60 kDa heat shock protein (HSP60) also known as chaperonin (cpn60) is encoded by multi-gene family that plays an important role in plant growth, development and in stress response as a molecular chaperone.
View Article and Find Full Text PDFExtreme environmental conditions seriously affect crop growth and development, resulting in a decrease in crop yield and quality. However, small heat shock proteins (Hsp20s) play an important role in helping plants to avoid these negative impacts. In this study, we identified the expression pattern of the CaHsp25.
View Article and Find Full Text PDFPhytophthora capsici has been the most destructive pathogen of pepper plants (Capsicum annuum L.), possessing the ability to quickly overcome the host defense system. In this context, the chitin-binding protein (CBP) family member CaChiIV1 regulates the response to P.
View Article and Find Full Text PDFChitin-binding proteins are pathogenesis-related gene family, which play a key role in the defense response of plants. However, thus far, little is known about the chitin-binding family genes in pepper ( L.).
View Article and Find Full Text PDF