ACS Appl Mater Interfaces
December 2024
All-inorganic lead halide perovskite quantum dots (PQDs) have emerged as highly promising materials for photonic and optoelectronic devices, solar cells, and photocatalysts. However, PQDs encounter instability and color separation issues because of ion diffusion. Current strategies mainly address stability in green CsPbBr PQDs, with limited focus on the red-mixed halide PQDs because of their inferior stability compared with green PQDs.
View Article and Find Full Text PDFAccurate, rapid, and remote detection of pressure, one of the fundamental physical parameters, is vital for scientific, industrial, and daily life purposes. However, due to the limited sensitivity of luminescent manometers, the optical pressure monitoring has been applied mainly in scientific studies. Here, we developed the first supersensitive optical pressure sensor based on the exciton-type luminescence of the Bi-doped, double perovskite material CsAgNaInCl.
View Article and Find Full Text PDFSingle-atom nanozymes (SANs) are the latest trend in biomaterials research and promote the application of single atoms in biological fields and the realization of protein catalysis with inorganic nanoparticles. Carbon quantum dots (CDs) have excellent biocompatibility and fluorescence properties as a substrate carrying a single atom. It is difficult to break through pure-phase single-atom materials with quantum dots as carriers.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2023
Upgraded technology has realized miniaturization and promoted transformation in each field. Miniaturized light-emitting diode (LED) chips enable higher resolution and create a full sense of immersion in displays. Porous GaN is a structure that can reduce excitation light leakage and enhance the light conversion efficiency.
View Article and Find Full Text PDFThe rapid change in population, environment, and climate is accompanied by the food crisis. As a new type of farming, indoor agriculture opens the possibility of addressing this crisis in the future. In this study, a phosphor-converted light-emitting diode (pc-LED), as energy-saving lighting for indoor agriculture, was used to evaluate the response and effect on the growth of .
View Article and Find Full Text PDFErbium (Er) complexes are used as optical gain materials for signal generation in the telecom C-band at 1540 nm, but they need a sensitizer to enhance absorption. Na substitution for Ag and Bi doping at the In site is a possible strategy to enhance the broadband emission of CsAgInCl, which could be used as a sensitizer for energy transfer to rare-earth elements. Herein, self-trapped exciton (STE) energy transfer to Er at 1540 nm in double perovskite is reported.
View Article and Find Full Text PDFLight-emitting diodes (LEDs) are attracting considerable attention around the world. Phosphor materials, as crucial color-converted components, play central roles in LED development. The demands for phosphor materials have become increasingly stringent over the past decades, from high brightness to narrowband emission or function-dependent spectrum engineering.
View Article and Find Full Text PDFResearch in the field of nano-optics is advancing by leaps and bounds, among which near-infrared (NIR) light optics have attracted much attention. NIR light has a longer wavelength than visible light, such that it can avoid shielding caused by biological tissues. This advantage has driven its importance and practicality in human treatment applications and has attracted significant attention from researchers in academia and industry.
View Article and Find Full Text PDFThe most common malignant tumor of the brain is glioblastoma multiforme (GBM) in adults. Many patients die shortly after diagnosis, and only 6% of patients survive more than 5 years. Moreover, the current average survival of malignant brain tumors is only about 15 months, and the recurrence rate within 2 years is almost 100%.
View Article and Find Full Text PDFOrganic-inorganic hybrid metal halides have recently attracted attention in the global research field for their bright light emission, tunable photoluminescence wavelength, and convenient synthesis method. This study reports the detailed properties of (CHN)MnBr, which emits bright green light with a high photoluminescence quantum yield. Results of powder X-ray diffraction, photoluminescence, thermogravimetric analysis, and Raman spectra show the phase transition of (CHN)MnBr at 430 K.
View Article and Find Full Text PDFHere, we report a halide precursor acid precipitation method to synthesize CsAgInBiCl ( = 0, 0.02, 0.04, 0.
View Article and Find Full Text PDFDespite the unique ability of lanthanide-doped upconversion nanoparticles (UCNPs) to convert near-infrared (NIR) light to high-energy UV-vis radiation, low quantum efficiency has rendered their application unpractical in biomedical fields. Here, we report anatase titania-coated plasmonic gold nanorods decorated with UCNPs (Au NR@aTiO@UCNPs) for combinational photothermal and photodynamic therapy to treat cancer. Our novel architecture employs the incorporation of an anatase titanium dioxide (aTiO) photosensitizer as a spacer and exploits the localized surface plasmon resonance (LSPR) properties of the Au core.
View Article and Find Full Text PDFThis review outlines the methods for preparing carbon dots (CDs) from various natural resources to select the process to produce CDs with the best biological application efficacy. The oxidative activity of CDs mainly involves photo-induced cell damage and the destruction of biofilm matrices through the production of reactive oxygen species (ROS), thereby causing cell auto-apoptosis. Recent research has found that CDs derived from organic carbon sources can treat cancer cells as effectively as conventional drugs without causing damage to normal cells.
View Article and Find Full Text PDFPortable near-infrared (NIR) light sources are in high demand for applications in spectroscopy, night vision, bioimaging, and many others. Typical phosphor designs feature isolated Cr ion centers, and it is challenging to design broadband NIR phosphors based on Cr-Cr pairs. Here, we explore the solid-solution series SrAlGaO:0.
View Article and Find Full Text PDFLight-harvesting and conversion ability is important to promote plant growth, and especially when resources are limited. A near-infrared (NIR) nanophosphor embedded with mesoporous silica nanoparticles (MSN), ZnGa O :Cr ,Sn (ZGOCS), was developed and its optical properties were harnessed to enhance the photosynthetic ability of Brassica rapa spp. chinensis.
View Article and Find Full Text PDFBroadband near-infrared CuInS/ZnS quantum dots with up to 94.8% quantum yield were synthesized with fast precursor decomposition leading to monomer conversion improvement. In the mini-LED package, the device showed high power efficiency and stability was also demonstrated with a penetration test and vein imaging showing its potential biomedical application in the theranostics field.
View Article and Find Full Text PDFThe rate of lung cancer has gradually increased in recent years, with an average annual increase of 15%. Afatinib (AFT) plays a key role in preventing non-small cell lung carcinoma (NSCLC) growth and spread. To increase the efficiency of drug loading and NSCLC cell tracking, near infrared-persistent luminescence nanomaterials (NIR PLNs), a silica shell-assisted synthetic route for mono-dispersal, are developed and used in the nanovehicle.
View Article and Find Full Text PDFThe systematic substitution of Ba in the Sr site of Sr[MgAlN]:Eu generates a deep-red-emitting phosphor with enhanced thermal luminescence properties. Gas pressure sintering (GPS) of all-nitride starting materials in Molybdenum (Mo) crucibles yields pure-phase red-orange-colored phosphors. Peaks in the synchrotron X-ray diffraction (SXRD) data show a systematic shift toward smaller angles due to the introduction of the larger Ba cation in the same crystal structure.
View Article and Find Full Text PDFNanobubble (NB), which simultaneously enhances ultrasound (US) images and access therapeutic platforms, is required for future cancer treatment. We designed a theranostic agent for novel cancer treatment by using an NB-encapsulated hybrid nanosystem that can be monitored by US and fluorescent imaging and activated by near-infrared (NIR) light. The nanosystem was transported to the tumor through the enhanced permeability and retention effect.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2019
Light-emitting diodes break barriers of size and performance for displays. With devices becoming smaller, the materials also need to get smaller. Chromium(III)-doped oxide phosphors, which emit near-infrared (NIR) light, have recently been used in small electronic devices.
View Article and Find Full Text PDF