Publications by authors named "Wen-Tao Cao"

Sewage irrigation is a common alternative to make up for the shortage of agricultural irrigation in intensive agricultural areas. Abundant organic matter and nutrients in sewage can improve soil fertility and crop yield, but hazardous materials, such as heavy metals, will damage the soil environmental quality and threaten human health. To better understand the characteristics of heavy metal enrichment and potential health risk in a sewage irrigated soil-wheat system, a total of sixty-three pairs of topsoil and wheat grain samples were collected from the sewage irrigated area of Longkou City in Shandong Province.

View Article and Find Full Text PDF

Wearable electronics are garnering growing interest in various emerging fields including intelligent sensors, artificial limbs, and human-machine interfaces. A remaining challenge is to develop multisensory devices that can conformally adhere to the skin even during dynamic-moving environments. Here, a single electronic tattoo (E-tattoo) based on a mixed-dimensional matrix network, which integrates two-dimensional  MXene nanosheets and one-dimensional cellulose nanofibers/Ag nanowires, is presented for multisensory integration.

View Article and Find Full Text PDF

An electrical signal is the key basis of normal physiological function of the nerve, and the stimulation of the electric signal also plays a very special role in the repair process of nerve injury. Electric stimulation is shown to be effective in promoting axonal regeneration and myelination, thereby promoting nerve injury repair. At present, it is considered that electric conduction recovery is a key aspect of regeneration and repair of long nerve defects.

View Article and Find Full Text PDF

With the increasing global electromagnetic pollution, it is more and more important to develop lightweight, flexible, and high electromagnetic shielding materials. Two-dimensional (2D) transition metal material MXenes have good conductivity and excellent electromagnetic shielding performance. Herein, a facile and effective method is reported to synthesize lightweight and flexible MXene/CNF/silver (MCS) composite membranes with a brick-like structure and high-performance electromagnetic interference shielding.

View Article and Find Full Text PDF

In vivo mineralization is a multistep process involving mineral-protein complexes and various metastable compounds in vertebrates. In this complex process, the minerals produced in the mitochondrial matrix play a critical role in initiating extracellular mineralization. However, the functional mechanisms of the mitochondrial minerals are still a mystery.

View Article and Find Full Text PDF

Hydroxyapatite (HA) is the main mineral constituent in the hard tissue of vertebrate, which is recognized as an important biomedical material owing to its excellent bioactivity and biocompatibility. Herein, we report a facile and green sonochemical route for the rapid synthesis of cellulose/HA nanocomposites in NaOH/urea aqueous solution. The in vitro behavior of the cellulose/HA nanocomposites was studied to evaluate the biological response of the nanocomposites following immersion in simulated body fluid for various periods (maximum of 28 days).

View Article and Find Full Text PDF

With the growing popularity of electrical communication equipment, high-performance electromagnetic interference (EMI) shielding materials are widely used to deal with radiation pollution. However, the large thickness and poor mechanical properties of many EMI shielding materials usually limit their applications. In this study, ultrathin and highly flexible TiCT (d-TiCT , MXene)/cellulose nanofiber (CNF) composite paper with a nacre-like lamellar structure is fabricated via a vacuum-filtration-induced self-assembly process.

View Article and Find Full Text PDF

Robust, stretchable, and strain-sensitive hydrogels have recently attracted immense research interest because of their potential application in wearable strain sensors. The integration of the synergistic characteristics of decent mechanical properties, reliable self-healing capability, and high sensing sensitivity for fabricating conductive, elastic, self-healing, and strain-sensitive hydrogels is still a great challenge. Inspired by the mechanically excellent and self-healing biological soft tissues with hierarchical network structures, herein, functional network hydrogels are fabricated by the interconnection between a "soft" homogeneous polymer network and a "hard" dynamic ferric (Fe) cross-linked cellulose nanocrystals (CNCs-Fe) network.

View Article and Find Full Text PDF
Article Synopsis
  • Farmland soil samples from Longkou City were collected and analyzed for pH levels and heavy metal content, focusing on 70 sampling points to understand pollution sources and impacts.
  • The study utilized multivariate statistical methods, geostatistics, and GIS to assess the spatial variation, revealing significant enrichment of heavy metals like cadmium (Cd), which was over three times its background level, indicating high pollution levels, especially for copper (Cu), lead (Pb), and cadmium (Cd).
  • The pollution was primarily linked to human activities, particularly sewage irrigation and agricultural practices, while other heavy metals were more influenced by natural factors; overall, 13 points showed moderate pollution and 28 were at alert levels, highlighting spatial disparities in heavy
View Article and Find Full Text PDF

In order to reveal the influence of anthropogenic factors on soil environment quality, a total of seventy-seven samples in topsoils were collected from Jiaojia gold mining area in Shandong province and were determined for Cu, Pb, Zn, Cr contents. Spatial structure, spatial distributions of concentrations and risk probability of heavy metals were analyzed using spatial statistic analysis. The average concentrations of Cu, Pb, Zn and Cr were 19.

View Article and Find Full Text PDF