Publications by authors named "Wen-Tang Shen"

Telomeres are repetitive DNA sequences at the end of each chromosome that provide stability and prevent end-to-end chromosome fusions. In order to understand mechanisms responsible for telomere shortening, it is necessary to develop methods for accurate telomere length measurement that can be applied to archival and fresh tissue and cells. This unit describes in situ-based quantitative fluorescence in situ hybridization (QFISH) protocols using a fluorescence-conjugated telomere probe (peptide nucleic acid, PNA) that stains telomeres proportionally to their length.

View Article and Find Full Text PDF

Background: Telomeres are tandem repeated DNA sequences at the ends of every chromosome, which cap, stabilize, and prevent chromosome fusions and instability. Telomere regulation is an important mechanism in cellular proliferation and senescence in normal diploid and neoplastic cells. Quantitative methods to assess telomere lengths are essential to understanding how telomere dynamics play a role in these processes.

View Article and Find Full Text PDF

Ulcerative colitis, a chronic inflammatory disease of the colon, is associated with a high risk of colorectal carcinoma that is thought to develop through genomic instability. We considered that the rapid cell turnover and oxidative injury observed in ulcerative colitis might accelerate telomere shortening, thereby increasing the potential of chromosomal ends to fuse, resulting in cycles of chromatin bridge breakage and fusion and chromosomal instability associated with tumor cell progression. Here we have used quantitative fluorescence in situ hybridization to compare chromosomal aberrations and telomere shortening in non-dysplastic mucosa taken from individuals affected by ulcerative colitis, either with (UC progressors) or without (UC non-progressors) dysplasia or cancer.

View Article and Find Full Text PDF