Publications by authors named "Wen-Shiue Young"

We describe the synthesis and characterization of bicontinuous cubic poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymer gels prepared within lyotropic cubic poly(oxyethylene)10 nonylphenol ether (NP-10) templates with Ia3[combining macron]d (gyroid, GYR) symmetry. The chemical polymerization of EDOT monomer in the hydrophobic channels of the NP-10 GYR phase was initiated by AgNO3, a mild oxidant that is activated when exposed to ultraviolet (UV) radiation. The morphology and physical properties of the resulting PEDOT gels were examined as a function of temperature and frequency using optical and electron microscopy, small-angle X-ray scattering (SAXS), dynamic mechanical spectroscopy, and electrochemical impedance spectroscopy (EIS).

View Article and Find Full Text PDF

High porosity and surface areas of ordered mesoporous materials provide substantial capacity for loading of guest molecules and the well-defined morphology of such materials can control their transport for controlled release. Here, the loading and release of mitoxantrone from unmodified ordered mesoporous carbon films is monitored using UV/Vis spectroscopy. Organic-organic self-assembly of Pluronic F127 with phenolic resin leads to interconnected elliptical pores (≈2 nm) in the film after carbonization.

View Article and Find Full Text PDF

Nanoscale self-assembly of block copolymer thin films has garnered significant research interest for nanotemplate design and membrane applications. To fulfill these roles, control of thin film morphology and orientation is critical. Solvent vapor annealing (SVA) treatments can be used to kinetically trap morphologies in thin films not achievable by traditional thermal treatments, but many variables affect the outcome of SVA, including solvent choice, total solvent concentration/swollen film thickness, and solvent removal rate.

View Article and Find Full Text PDF

We report the formation of a double-gyroid network morphology in normal-tapered poly(isoprene-b-isoprene/styrene-b-styrene) [P(I-IS-S)] and inverse-tapered poly(isoprene-b- styrene/isoprene-b-styrene) [P(I-SI-S)] diblock copolymers. Our tapered diblock copolymers with overall poly(styrene) volume fractions of 0.65 (normal-tapered) and 0.

View Article and Find Full Text PDF