Publications by authors named "Wen-Quan Tao"

Multiphase reactive flow in porous media is an important research topic in many natural and industrial processes. In the present work, photolithography is adopted to fabricate multicomponent mineral porous media in a microchannel, microfluidics experiments are conducted to capture the multiphase reactive flow, methyl violet 2B is employed to visualize the real-time concentration field of the acid solution and a sophisticated image processing method is developed to obtain the quantitative results of the distribution of different phases. With the advanced methods, experiments are conducted with different acid concentration and inlet velocity in different porous structures with different phenomena captured.

View Article and Find Full Text PDF

Due to the threats posed by many volatile organic compounds (VOCs) to human health in indoor spaces via air, the mass transfer characteristics of VOCs are of critical importance to the study of their mechanism and control. As a significant part of the mass transfer process, diffusion widely exists in emissions from floors (e.g.

View Article and Find Full Text PDF

Porous flow fields distribute fuel and oxygen for the electrochemical reactions of proton exchange membrane (PEM) fuel cells through their pore network instead of conventional flow channels. This type of flow fields has showed great promises in enhancing reactant supply, heat removal, and electrical conduction, reducing the concentration performance loss and improving operational stability for fuel cells. This review presents the research and development progress of porous flow fields with insights for next-generation PEM fuel cells of high power density (e.

View Article and Find Full Text PDF

To date, few studies have been conducted on the characteristics of flow and dispersion caused by indoor radiant floor heating integrated with natural ventilation. In this study, we employed reduced-scale numerical models validated by wind-tunnel experiments to investigate the influence of radiant floor heating integrated with natural ventilation on airflow, heat transfer, and pollutant dispersion within an isolated building. The Richardson number () was specified to characterize the interaction between the inflow inertia force and the buoyancy force caused by radiant floor heating.

View Article and Find Full Text PDF

Revealing the correlation between polarization curve and input parameters is a highly concerned topic in proton exchange membrane fuel cell (PEMFC) research. Till now, three-dimensional (3D) numerical models have been the most comprehensive methods to predict the polarization curve under variational conditions. However, due to the diversity and complexity of the parameters involved, an immense numerical or experimental burden is required to obtain the above-referred correlation based on 3D numerical model.

View Article and Find Full Text PDF

This study conducted the numerical models validated by wind-tunnel experiments to investigate the issues of -independence of indoor airflow and pollutant dispersion within an isolated building. The window Reynolds number ( ) was specified to characterize the indoor flow and dispersion. The indicators of (ratio of relative change) or () (difference ratio of dimensionless concentration) ≤ 5% were applied to quantitatively determine the critical for indoor flow and turbulent diffusion.

View Article and Find Full Text PDF

In this paper, a three-dimensional non-isothermal computational model for predicting indoor SVOC distribution is proposed, considering the effects of turbulence diffusion and suspended particles. The realizable k-ε model is introduced for turbulent flow simulation in a room. The Euler-Euler method is adopted to deal with the gas-particle two-phase flow coupled problem.

View Article and Find Full Text PDF

A new hybrid system is proposed to capture CO as well as generate electricity with the low CO inlet condition of confined space. Within the system, a novel photocatalytic porous framework coated by g-CN/TiO is prepared to avoid the inhibition of microalgae growth caused by the direct addition of photocatalyst. Under 0.

View Article and Find Full Text PDF

Questions regarding bubble nucleation on an ideally smooth surface are seemingly endless, but it can not be adequately verified yet because of the scale limitation (microscopic scale). Hence, in this study, bubble nucleation on an ideally smooth substrate is explored using the molecular dynamics simulation method. An ideally smooth hydrophilic platinum substrate at 145 K is conducted to heat the simple L-J liquid argon.

View Article and Find Full Text PDF

Hypothesis: Freezing morphologies of impacting water droplets depend on the interaction between droplet spreading and solidification. The existing studies showed that the shape of frozen droplets mostly is of spherical cap with a singular tip, because of much shorter timescale of the droplet spreading than that of the solidification. Here, we create the experimental conditions of extended droplet spreading and greatly enhanced heat transfer for fast solidification, thereby allowing to study such droplet freezing process under the strong coupling of the droplet spreading and solidification.

View Article and Find Full Text PDF

Driven by a magnetic field, the rotation of a particle near a wall can be rectified into a net translation. The particles thus actuated, or surface walkers, are a kind of active colloid that finds application in biology and microfluidics. Here, we investigate the motion of spherical surface walkers confined between two walls using simulations based on the immersed-boundary lattice Boltzmann method.

View Article and Find Full Text PDF

We report the application of machine learning methods for predicting the effective diffusivity (D) of two-dimensional porous media from images of their structures. Pore structures are built using reconstruction methods and represented as images, and their effective diffusivity is computed by lattice Boltzmann (LBM) simulations. The datasets thus generated are used to train convolutional neural network (CNN) models and evaluate their performance.

View Article and Find Full Text PDF
Article Synopsis
  • Antibiotics are emerging contaminants in water that pose risks to ecosystems and human health, making their detection crucial.
  • Researchers developed luminescent chemosensors using metal-organic frameworks (MOF) with dyes to improve the detection of antibiotics in water.
  • The new sensors showed significantly enhanced sensitivity and lower limits of detection for specific antibiotics, indicating their potential for effective water quality monitoring.
View Article and Find Full Text PDF

Three dimensional direct simulation Monte Carlo (DSMC) method with the variable soft sphere (VSS) collision model is implemented to solve the Boltzmann equation and to acquire the heat flux between two parallel plates (Fourier Flow). The gaseous thermal conductivity of nitrogen is derived based on the Fourier's law under local equilibrium condition at temperature from 270 to 1800 K and pressure from 0.5 to 100,000 Pa and compared with the experimental data and Eucken relation from Chapman and Enskog (CE) theory.

View Article and Find Full Text PDF

In this paper, two modified unit cell models, truncated octahedron and cubic array of intersecting square rods with 45-degree rotation, are developed in consideration of the tortuous path of heat conduction in solid skeleton of silica aerogel. The heat conduction is analyzed for each model and the expressions of effective thermal conductivity of the modified unit cell models are derived. Considering the random microstructure of silica aerogel, the probability model is presented.

View Article and Find Full Text PDF

In this paper, the thermal conductivity of dry Nafion 117 is measured by Hot Disk TPS2500 and a molecular dynamics calculation model for the proton exchange membrane is constructed by Materials Studio (MS) software platform to study its thermal conductivity. Cell structures of different water content of Nafion membrane at 300 K and 330 K are obtained, respectively. It is found that at the same temperature the predicted thermal conductivity of PEM increases with the water content, and at the same water content the predicted thermal conductivity decreases with the temperature.

View Article and Find Full Text PDF

In this work, the influence of temperature and humidity environment on the water vapor adsorption capacity and effective thermal conductivity of silica nano-porous material is conducted within a relative humidity range from 15% to 90% at 25 °C, 40 °C and 55 °C, respectively. The experiment results show that both the temperature and relative humidity have significant influence on the adsorption capacity and effective thermal conductivity of silica nano-porous materials. The adsorption capacity and effective thermal conductivity increase with humidity because of the increases of water vapor concentration.

View Article and Find Full Text PDF

Gas slippage occurs when the mean free path of the gas molecules is in the order of the characteristic pore size of a porous medium. This phenomenon leads to Klinkenberg's effect where the measured permeability of a gas (apparent permeability) is higher than that of the liquid (intrinsic permeability). A generalized lattice Boltzmann model is proposed for flow through porous media that includes Klinkenberg's effect, which is based on the model of Guo et al.

View Article and Find Full Text PDF

A pore-scale model based on the lattice Boltzmann (LB) method is developed for multiphase reactive transport with phase transitions and dissolution-precipitation processes. The model combines the single-component multiphase Shan-Chen LB model [X. Shan and H.

View Article and Find Full Text PDF

A mesoscopic model based on the lattice Boltzmann method (LBM) is proposed to simulate the formation of Liesegang precipitation patterns and investigate the effects of gel on the morphology of the precipitates. In this model, nucleation is introduced on the basis of Ostwald's supersaturation theory, and subsequent crystal growth on the precipitate surface is simulated using a crystal growth model by taking into account the heterogeneous reaction on the surface of the precipitate. This model can capture the porous structures of the precipitates and can take into account the effects of the gel concentration and material by adjusting the gel porosity and nucleation threshold.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: