Publications by authors named "Wen-Ning Wang"

Superhydrophobic materials have immense applications in the fields of industry and research. However, their durability is still a cause for concern. A facile method for preparing durable superhydrophobic films from carbon nanotubes (CNTs) and the main-chain type polybenzoxazine precursors is reported herein.

View Article and Find Full Text PDF

Ataxin-7 (Atx7) is a disease-related protein associated with the pathogenesis of spinocerebellar ataxia 7, while its polyglutamine (polyQ) tract in N-terminus is the causative source of aggregation and proteinopathy. We investigated the structure, dynamics and aggregation properties of the N-terminal 62-residue fragment of Atx7 (Atx7-N) by biochemical and biophysical approaches. The results showed that the normal Atx7-N with a tract of 10 glutamines (10Q) overall adopts a flexible and disordered structure, but it may contain a short or small population of helical structure in solution.

View Article and Find Full Text PDF

In this study, we prepared biocompatible superhydrophilic and underwater superoleophobic tannic acid (TA)/polyvinylpyrrolidone (PVP)-coated stainless-steel meshes that mediated extremely efficient separations of mixtures of oil and water. These TA/PVP-coated stainless-steel meshes displayed excellent antifouling properties and could be used to separate oil/water mixtures continuously for up to 24 h. Moreover, a funnel-like TA/PVP-coated stainless-steel mesh device could be used for underwater oil transportation and collection.

View Article and Find Full Text PDF

ATP binding cassette transporters are integral membrane proteins that use the energy released from ATP hydrolysis at the two nucleotide binding domains (NBDs) to translocate a wide variety of substrates through a channel at the two transmembrane domains (TMDs) across the cell membranes. MsbA from Gram-negative bacteria is a lipid and multidrug resistance ATP binding cassette exporter that can undergo large scale conformational changes between the outward-facing and the inward-facing conformations revealed by crystal structures in different states. Here, we use targeted molecular dynamics simulation methods to explore the atomic details of the conformational transition from the outward-facing to the inward-facing states of MsbA.

View Article and Find Full Text PDF

This work aims to investigate the reaction mechanism of lanthanum atom with formaldehyde in the gas phase using density functional theory and coupled cluster calculations. The results indicate that the minimum energy pathway, similar to the reactions of its neighboring yttrium with formaldehyde, is the formation of the eta2-formaldehyde-metal complex followed by two C-H insertions which leads to metal dihydrides and carbon monoxide. The competing pathway producing a metal-carbonyl compound and hydrogen molecule favors a high-spin state and thus involves a spin conversion from doublet state to quartet state.

View Article and Find Full Text PDF

Small neutral, anionic, and cationic silver cluster hydrides AgnH and anionic HAgnH (n=1-7) have been studied using the PW91PW91 density functional method. It was found that the most stable structure of the AgnH complex (neutral or charged) does not always come from that of the lowest energy bare silver cluster plus an attached H atom. Among various possible adsorption sites, the bridge site is energetically preferred for the cationic and most cases of neutral Agn.

View Article and Find Full Text PDF

The oxidative dehydrogenation (ODH) of propane on single-crystal V(2)O(5)(001) is studied by periodic density functional theory (DFT) calculations. The energetics and pathways for the propane to propene conversion are determined. We show that (i) the C-H bond of propane can be activated by both the terminal and the bridging lattice O atoms on the surface with similar activation energies.

View Article and Find Full Text PDF

CO adsorption on small neutral, anionic, and cationic silver clusters Ag(n) (n = 1-7) has been studied with use of the PW91PW91 density functional theory (DFT) method. The adsorption of CO on-top site, among various possible sites, is energetically preferred irrespective of the charge state of the silver cluster. The cationic silver clusters generally have a greater tendency to adsorb CO than the anionic and neutral silver ones, except for n = 3 and 4, and the binding energies reach a local minimum at n = 5.

View Article and Find Full Text PDF

Twenty-three density functional theory (DFT) methods, including the second- and the third-generation functionals, are tested in conjunction with two basis sets (LANL2DZ and SDD) for studying the properties of neutral and ionic silver clusters. We find that DFT methods incorporating the uniform electron gas limit in the correlation functional, namely, those with Perdew's correlation functionals (PW91, PBE, P86, and TPSS), Becke's B95, and the Van Voorhis-Scuseria functional VSXC, generally perform better than the other group of functionals, e.g.

View Article and Find Full Text PDF

Chlorine adsorption on small neutral, anionic, and cationic silver clusters Ag(n) (n=2-7) has been studied using the PW91PW91 density functional method. It was found that the adsorption of chlorine on the lowest-energy bare clusters does not always produce the lowest-energy complexes. In addition, the binding of chlorine can greatly change the geometries of the silver clusters in some cases.

View Article and Find Full Text PDF