Juvenile myelomonocytic leukemia (JMML), a clonal hematologic malignancy, originates from mutated hematopoietic stem cells (HSCs). The mechanism sustaining the persistence of mutant stem cells, leading to leukemia development, remains elusive. In this study, we conducted comprehensive examination of gene expression profiles, transcriptional factor regulons, and cell compositions/interactions throughout various stages of tumor cell development in Ptpn11 mutation-associated JMML.
View Article and Find Full Text PDFBackground: Cardiac pathological outcome of metabolic remodeling is difficult to model using cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CMs) due to low metabolic maturation.
Methods: hiPSC-CM spheres were treated with AMP-activated protein kinase (AMPK) activators and examined for hiPSC-CM maturation features, molecular changes and the response to pathological stimuli.
Results: Treatment of hiPSC-CMs with AMPK activators increased ATP content, mitochondrial membrane potential and content, mitochondrial DNA, mitochondrial function and fatty acid uptake, indicating increased metabolic maturation.
Amino acid (AA) metabolism is involved in diverse cellular functions, including cell survival and growth, however it remains unclear how it regulates normal hematopoiesis versus leukemogenesis. Here, we report that knockout of (ASCT2), a transporter of neutral AAs, especially glutamine, results in mild to moderate defects in bone marrow and mature blood cell development under steady state conditions. In contrast, constitutive or induced deletion of decreases leukemia initiation and maintenance driven by the oncogene or deficiency.
View Article and Find Full Text PDFImmature phenotypes of cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) limit the utility of these cells in clinical application and basic research. During cardiac development, postnatal cardiomyocytes experience high oxygen tension along with a concomitant downregulation of hypoxia-inducible factor 1α (HIF-1α), leading to increased fatty acid oxidation (FAO). We hypothesized that targeting HIF-1α alone or in combination with other metabolic regulators could promote the metabolic maturation of hiPSC-CMs.
View Article and Find Full Text PDFHematopoietic stem cell (HSC) quiescence is a tightly regulated process crucial for hematopoietic regeneration, which requires a healthy and supportive microenvironmental niche within the bone marrow (BM). Here, we show that deletion of Ptpn21, a protein tyrosine phosphatase highly expressed in HSCs, induces stem cell egress from the niche due to impaired retention within the BM. Ptpn21 HSCs exhibit enhanced mobility, decreased quiescence, increased apoptosis, and defective reconstitution capacity.
View Article and Find Full Text PDFWhile deregulation of mitochondrial metabolism and cytosolic glycolysis has been well recognized in tumor cells, the role of coordinated mitochondrial oxidation and cytosolic fermentation of pyruvate, a key metabolite derived from glucose, in physiological processes is not well understood. Here, we report that knockout of , a mitochondrial phosphoinositide phosphatase, completely blocked postnatal cerebellar development. Proliferation of granule cell progenitors, the most actively replicating cells in the developing cerebellum, was only moderately decreased, and proliferation of Purkinje cell progenitors did not seem to be affected in knockout mice.
View Article and Find Full Text PDFJuvenile Myelomonocytic Leukemia (JMML) is a pediatric myeloproliferative neoplasm (MPN) that has a poor prognosis. Somatic mutations in Ptpn11 are the most frequent cause of JMML and they commonly occur . Animal models of mutant Ptpn11 have probed the signaling pathways that contribute to JMML.
View Article and Find Full Text PDFCatalytically activating mutations in , which encodes the protein tyrosine phosphatase SHP2, cause 50% of Noonan syndrome (NS) cases, whereas inactivating mutations in are responsible for nearly all cases of the similar, but distinct, developmental disorder Noonan syndrome with multiple lentigines (NSML; formerly called LEOPARD syndrome). However, both types of disease mutations are gain-of-function mutations because they cause SHP2 to constitutively adopt an open conformation. We found that the catalytic activity of SHP2 was required for the pathogenic effects of gain-of-function, disease-associated mutations on the development of hydrocephalus in the mouse.
View Article and Find Full Text PDFCoagulation factor XII (FXII) deficiency is associated with decreased neutrophil migration, but the mechanisms remain uncharacterized. Here, we examine how FXII contributes to the inflammatory response. In 2 models of sterile inflammation, FXII-deficient mice (F12-/-) had fewer neutrophils recruited than WT mice.
View Article and Find Full Text PDFLoss of LKB1 is associated with increased metastasis and poor prognosis in lung cancer, but the development of targeted agents is in its infancy. Here we report that a glutaminolytic enzyme, glutamate dehydrogenase 1 (GDH1), upregulated upon detachment via pleomorphic adenoma gene 1 (PLAG1), provides anti-anoikis and pro-metastatic signals in LKB1-deficient lung cancer. Mechanistically, the GDH1 product α-KG activates CamKK2 by enhancing its substrate AMPK binding, which contributes to energy production that confers anoikis resistance.
View Article and Find Full Text PDFGermline activating mutations of the protein tyrosine phosphatase SHP2 (encoded by PTPN11), a positive regulator of the RAS signalling pathway, are found in 50% of patients with Noonan syndrome. These patients have an increased risk of developing leukaemia, especially juvenile myelomonocytic leukaemia (JMML), a childhood myeloproliferative neoplasm (MPN). Previous studies have demonstrated that mutations in Ptpn11 induce a JMML-like MPN through cell-autonomous mechanisms that are dependent on Shp2 catalytic activity.
View Article and Find Full Text PDFCurrent therapy for acute myeloid leukemia (AML) primarily includes high-dose cytotoxic chemotherapy with or without allogeneic stem cell transplantation. Targeting unique cellular metabolism of cancer cells is a potentially less toxic approach. Monotherapy with mitochondrial inhibitors like metformin have met with limited success since escape mechanisms such as increased glycolytic ATP production, especially in hyperglycemia, can overcome the metabolic blockade.
View Article and Find Full Text PDFThe difficulty in maintaining the reconstituting capabilities of hematopoietic stem cells (HSCs) in culture outside of the bone marrow microenvironment has severely limited their utilization for clinical therapy. This hurdle is largely due to the differentiation of long-term stem cells. Emerging evidence suggests that energy metabolism plays an important role in coordinating HSC self-renewal and differentiation.
View Article and Find Full Text PDFCREB-binding protein (CBP)/p300 interacting transactivator with glutamic acid (Glu) and aspartic acid (Asp)-tail 2 (Cited2) was recently shown to be essential for gluconeogenesis in the adult mouse. The metabolic function of Cited2 in mouse embryonic stem cells (mESCs) remains elusive. In the current study, the metabolism of glucose was investigated in mESCs, which contained a deletion in the gene for Cited2 (Cited2(Δ/-)).
View Article and Find Full Text PDFActivating mutations in PTPN11 (encoding SHP2), a protein tyrosine phosphatase (PTP) that plays an overall positive role in growth factor and cytokine signaling, are directly associated with the pathogenesis of Noonan syndrome and childhood leukemias. Identification of SHP2-selective inhibitors could lead to the development of new drugs that ultimately serve as treatments for PTPN11-associated diseases. As the catalytic core of SHP2 shares extremely high homology to those of SHP1 and other PTPs that play negative roles in cell signaling, to identify selective inhibitors of SHP2 using computer-aided drug design, we targeted a protein surface pocket that is adjacent to the catalytic site, is predicted to be important for binding to phosphopeptide substrates, and has structural features unique to SHP2.
View Article and Find Full Text PDFGain of function (GOF) mutations in protein tyrosine phosphatase Ptpn11 have been identified in childhood leukemias, and these mutations are sufficient to drive the development of myeloproliferative disorder and malignant leukemias in mice. However, the molecular mechanisms by which Ptpn11 mutations induce these malignancies are not completely understood. Here we report that Ptpn11 GOF mutations cause cytokine hypersensitivity in hematopoietic cells partly by enhancing the production of reactive oxygen species (ROS).
View Article and Find Full Text PDFThe regulation and coordination of mitochondrial metabolism with hematopoietic stem cell (HSC) self-renewal and differentiation is not fully understood. Here we report that depletion of PTPMT1, a PTEN-like mitochondrial phosphatase, in inducible or hematopoietic-cell-specific knockout mice resulted in hematopoietic failure due to changes in the cell cycle and a block in the differentiation of HSCs. Surprisingly, the HSC pool was increased by ∼40-fold in PTPMT1 knockout mice.
View Article and Find Full Text PDFZhongguo Xue Xi Chong Bing Fang Zhi Za Zhi
April 2011
A schistosomiasis surveillance was performed with the Oncomelania snail survey and suspected patient survey in Jiaxing City, 2009. There were snails in 3 villages of 2 counties and the airport of Jiaxing with the area of 17 390 m2, and the highest density was 64 snails per 0.1 m2.
View Article and Find Full Text PDFMitochondria are highly dynamic organelles that play multiple roles in cells. How mitochondria cooperatively modulate embryonic stem (ES) cell function during development is not fully understood. Global disruption of Ptpmt1, a mitochondrial Pten-like phosphatidylinositol phosphate (PIP) phosphatase, resulted in developmental arrest and postimplantation lethality.
View Article and Find Full Text PDFActivating mutations in protein tyrosine phosphatase 11 (Ptpn11) have been identified in childhood acute leukemias, in addition to juvenile myelomonocytic leukemia (JMML), which is a myeloproliferative disorder (MPD). It is not clear whether activating mutations of this phosphatase play a causal role in the pathogenesis of acute leukemias. If so, the cell origin of leukemia-initiating stem cells (LSCs) remains to be determined.
View Article and Find Full Text PDFGermline and somatic gain-of-function mutations in tyrosine phosphatase PTPN11 (SHP-2) are associated with juvenile myelomonocytic leukemia (JMML), a myeloproliferative disease (MPD) of early childhood. The mechanism by which PTPN11 mutations induce this disease is not fully understood. Signaling partners that mediate the pathogenic effects of PTPN11 mutations have not been explored.
View Article and Find Full Text PDFThe intracellular Ca(2+) concentration ([Ca(2+)](i)) in skeletal muscles must be rapidly regulated during the excitation-contraction-relaxation process. However, the signalling components involved in such rapid Ca(2+) movement are not fully understood. Here we report that mice deficient in the newly identified PtdInsP (phosphatidylinositol phosphate) phosphatase MIP/MTMR14 (muscle-specific inositol phosphatase) show muscle weakness and fatigue.
View Article and Find Full Text PDFMutations in SHP-2 phosphatase (PTPN11) that cause hyperactivation of its catalytic activity have been identified in Noonan syndrome and various childhood leukemias. Recent studies suggest that the gain-of-function (GOF) mutations of SHP-2 play a causal role in the pathogenesis of these diseases. However, the molecular mechanisms by which GOF mutations of SHP-2 induce these phenotypes are not fully understood.
View Article and Find Full Text PDFVirtual screening methods combined with experimental assays were used to identify low molecular weight inhibitors for Src homology 2 domain-containing phosphatase 2 (SHP-2) that is mutated and hyperactivated in Noonan syndrome and a significant portion of childhood leukemias. Virtual screening included multiple conformations of the protein, score normalization procedures, and chemical similarity considerations. As the catalytic core of SHP-2 shares extremely high homology to those of the related SHP-1 phosphatase and other tyrosine phosphatases, in order to identify selective inhibitors, we chose to target an adjacent protein surface pocket that is predicted to be important for binding to phosphopeptides and that has structural features unique to SHP-2.
View Article and Find Full Text PDFSHP-2 phosphatase forms a stable protein complex with and is heavily tyrosine-phosphorylated by the oncogenic tyrosine kinase Bcr-Abl. However, the role of SHP-2 in Bcr-Abl-mediated leukemogenesis is unclear. In the present report, we provide evidence that SHP-2 is required for hematopoietic cell transformation by Bcr-Abl.
View Article and Find Full Text PDF