Background: Sheep coccidiosis is an infectious parasitic disease that primarily causes diarrhea and growth retardation in young animals, significantly hindering the development of the sheep breeding industry. Cereal grains and animal feeds are frequently contaminated with mycotoxins worldwide, with aflatoxin B1 (AFB1) being the most common form. AFB1 poses a serious threat to gastrointestinal health upon ingestion and affects the function of parenteral organs, thus endangering livestock health.
View Article and Find Full Text PDFMycotoxins, unavoidable contaminants in feed and feed ingredients, have the potential to influence the incidence and severity of various diseases upon ingestion. Sheep coccidiosis is an enteric disease caused by protozoa of Eimeria spp. However, the extent to which the presence of aflatoxin b1 (AFB1) synergistically exacerbates damage to intestinal health in lambs with Eimeria remains unclear.
View Article and Find Full Text PDFThe gastrointestinal microbiota, a complex ecosystem, is involved in the physiological activities of hosts and the development of diseases. Birds occupy a critical ecological niche in the ecosystem, performing a variety of ecological functions and possessing a complex gut microbiota composition. However, the gut microbiota of wild and captive birds has received less attention in the same region.
View Article and Find Full Text PDFAflatoxin B1 (AFB1) is a group of highly toxic mycotoxins that are commonly found in human and animal foods and threaten animal and human food safety. Total flavonoids of (TFRD), a traditional Chinese medicinal herb, exert multiple biological activities such as immunomodulatory, anti-inflammatory, and anti-oxidation effects. Here, a total of 160 healthy 21-day-old male broilers were randomly divided into four groups: the CON group, the TFRD group, the AFB1 group, and the AFB1 + TFRD group.
View Article and Find Full Text PDFTibial dyschondroplasia (TD) with multiple incentives is a metabolic skeletal disease that occurs in fast-growing broilers. Perturbations in the gut microbiota (GM) have been shown to affect bone homoeostasis, but the mechanisms by which GM modulates bone metabolism in TD broilers remain unknown. Here, using a broiler model of TD, we noted elevated blood glucose (GLU) levels in TD broilers, accompanied by alterations in the pancreatic structure and secretory function and damaged intestinal barrier function.
View Article and Find Full Text PDF