This research, which involved a comprehensive methodology, including depositing electroplated copper on a copper seed layer and Al-doped ZnO (AZO) thin films on textured silicon substrates using DC magnetron sputtering with varying substrate heating, has yielded significant findings. The study thoroughly investigated the effects of substrate temperature (Ts) on copper adhesion strength and morphology using the peel force test and electron microscopy. The peel force test was conducted at angles of 90°, 135°, and 180°.
View Article and Find Full Text PDFIn this work, nickel thin films were deposited on texture silicon by electroless plated deposition. The electroless-deposited Ni layers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), X-ray diffraction analysis (XRD), and sheet resistance measurement. The results indicate that the dominant phase was Ni₂Si and NiSi in samples annealed at 300-800 °C.
View Article and Find Full Text PDFVarious structures of Cu (50 nm)/Ru (2 nm)/MgO (0.5-3 nm)/Ta (2 nm)/Si were prepared by sputtering and electroplating techniques, in which the ultra-thin trilayer of Ru (2 nm)/MgO (0.5-3 nm)/Ta (2 nm) is used as the diffusion barrier against the interdiffusion between Cu film and Si substrate.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
July 2010
Nanosized single and multiple layers of electroless Ni films were deposited on Fe film. The multilayer films consisting of a Fe/(Ni1 Ni2)n structure, where Ni1 and Ni2 denote various electroless Ni films deposited in plating baths with different pH values, and n denotes layer numbers and equals to 2, 4, 8, and 16, were formed by alternately changing the pH value of plating baths under controlled deposition time during the deposition process. The ensuing results showed that the boundaries between films are almost even.
View Article and Find Full Text PDFA nontoxic drug nanocarrier containing carboxyl groups was successfully developed by mixing magnetic nanoparticles (MNPs) of Fe(3)O(4) with the water-soluble polyaniline derivative poly[aniline-co-sodium N-(1-one-butyric acid) aniline] (SPAnNa) and doping with HCl aqueous solution to form SPAnH/MNPs shell/core. SPAnH/MNPs could be used to effectively immobilize the hydrophobic drug paclitaxel (PTX), thus enhancing the drug's thermal stability and water solubility. Up to 302.
View Article and Find Full Text PDF