NIPP1 is a ubiquitously expressed regulatory subunit of PP1. Its embryonic deletion in keratinocytes causes chronic sterile skin inflammation, epidermal hyperproliferation, and resistance to mutagens in adult mice. To explore the primary effects of NIPP1 deletion, we first examined hair cycle progression of NIPP1 skin knockouts (SKOs).
View Article and Find Full Text PDFThe mammalian integumentary system, including skin and its appendages, serves as a protective barrier for the body. During development, skin epidermis undergoes rapid cell division and differentiation to form multiple stratified layers of keratinocytes. Concurrently the epidermis also gives rise to hair follicles that invaginate into the dermis.
View Article and Find Full Text PDFFront Cell Dev Biol
October 2022
Hair follicles undergo cycles of regeneration fueled by hair follicle stem cells (HFSCs). While β-catenin-dependent canonical Wnt signaling has been extensively studied and implicated in HFSC activation and fate determination, very little is known about the function of β-catenin-independent Wnt signaling in HFSCs. In this study, we investigate the functional role of ROR2, a Wnt receptor, in HFSCs.
View Article and Find Full Text PDFThe skin functions as a barrier between the organism and the surrounding environment. Direct exposure to external stimuli and the accumulation of genetic mutations may lead to abnormal cell growth, irreversible tissue damage and potentially favor skin malignancy. Skin homeostasis is coordinated by an intricate signaling network, and its dysregulation has been implicated in the development of skin cancers.
View Article and Find Full Text PDFTissue regeneration relies on resident stem cells (SCs), whose activity and lineage choices are influenced by the microenvironment. Exploiting the synchronized, cyclical bouts of tissue regeneration in hair follicles (HFs), we investigate how microenvironment dynamics shape the emergence of stem cell lineages. Employing epigenetic and ChIP-seq profiling, we uncover how signal-dependent transcription factors couple spatiotemporal cues to chromatin dynamics, thereby choreographing stem cell lineages.
View Article and Find Full Text PDFMammalian skin and its appendages constitute the integumentary system forming a barrier between the organism and its environment. During development, skin epidermal cells divide rapidly and stratify into a multilayered epithelium, as well as invaginate downward in the underlying mesenchyme to form hair follicles (HFs). In postnatal skin, the interfollicular epidermal (IFE) cells continuously proliferate and differentiate while HFs undergo cycles of regeneration.
View Article and Find Full Text PDFMalformations of the cerebral cortex (MCCs) are devastating developmental disorders. We report here that mice with embryonic neural stem-cell-specific deletion of Llgl1 (Nestin-Cre/Llgl1), a mammalian ortholog of the Drosophila cell polarity gene lgl, exhibit MCCs resembling severe periventricular heterotopia (PH). Immunohistochemical analyses and live cortical imaging of PH formation revealed that disruption of apical junctional complexes (AJCs) was responsible for PH in Nestin-Cre/Llgl1 brains.
View Article and Find Full Text PDFCell-cell adhesion protein αE-catenin inhibits skin squamous cell carcinoma (SCC) development; however, the mechanisms responsible for this function are not completely understood. We report here that αE-catenin inhibits β4 integrin-mediated activation of SRC tyrosine kinase.SRCis the first discovered oncogene, but the protein substrate critical for SRC-mediated transformation has not been identified.
View Article and Find Full Text PDFSequential generation of neurons and glial cells during development is critical for the wiring and function of the cerebral cortex. This process requires accurate coordination of neural progenitor cell (NPC) fate decisions, by NPC-autonomous mechanisms as well as by negative feedback from neurons. Here, we show that neurogenesis is protracted and gliogenesis decreased in mice with mutations of genes Celsr3 and Fzd3.
View Article and Find Full Text PDFIn mammals, Wnt/β-catenin signaling features prominently in stem cells and cancers, but how and for what purposes have been matters of much debate. In this review, we summarize our current knowledge of Wnt/β-catenin signaling and its downstream transcriptional regulators in normal and malignant stem cells. We centered this review largely on three types of stem cells--embryonic stem cells, hair follicle stem cells, and intestinal epithelial stem cells--in which the roles of Wnt/β-catenin have been extensively studied.
View Article and Find Full Text PDFRecent studies have shown that the transcriptional functions of REST are much broader than repressing neuronal genes in non-neuronal systems. Whether REST occupies similar chromatin regions in different cell types and how it interacts with other transcriptional regulators to execute its functions in a context-dependent manner has not been adequately investigated. We have applied ChIP-seq analysis to identify the REST cistrome in human CD4+ T cells and compared it with published data from 15 other cell types.
View Article and Find Full Text PDFHair follicle stem cells (HFSCs) regenerate hair in response to Wnt signalling. Here, we unfold genome-wide transcriptional and chromatin landscapes of β-catenin-TCF3/4-TLE circuitry, and genetically dissect their biological roles within the native HFSC niche. We show that during HFSC quiescence, TCF3, TCF4 and TLE (Groucho) bind coordinately and transcriptionally repress Wnt target genes.
View Article and Find Full Text PDFHair production is fueled by stem cells (SCs), which transition between cyclical bouts of rest and activity. Here, we explore why hair growth wanes with age. We show that aged hair follicle SCs (HFSCs) in mice exhibit enhanced resting and abbreviated growth phases and are delayed in response to tissue-regenerating cues.
View Article and Find Full Text PDFTissue growth is the multifaceted outcome of a cell's intrinsic capabilities and its interactions with the surrounding environment. Decoding these complexities is essential for understanding human development and tumorigenesis. Here we tackle this problem by carrying out the first genome-wide RNA-interference-mediated screens in mice.
View Article and Find Full Text PDFDNA methylation is a mechanism of epigenetic regulation that is common to all vertebrates. Functional studies underscore its relevance for tissue homeostasis, but the global dynamics of DNA methylation during in vivo differentiation remain underexplored. Here we report high-resolution DNA methylation maps of adult stem cell differentiation in mouse, focusing on 19 purified cell populations of the blood and skin lineages.
View Article and Find Full Text PDFUsing mouse skin, where bountiful reservoirs of synchronized hair follicle stem cells (HF-SCs) fuel cycles of regeneration, we explore how adult SCs remodel chromatin in response to activating cues. By profiling global mRNA and chromatin changes in quiescent and activated HF-SCs and their committed, transit-amplifying (TA) progeny, we show that polycomb-group (PcG)-mediated H3K27-trimethylation features prominently in HF-lineage progression by mechanisms distinct from embryonic-SCs. In HF-SCs, PcG represses nonskin lineages and HF differentiation.
View Article and Find Full Text PDFThe Hippo pathway regulates contact inhibition of cell proliferation and, ultimately, organ size in diverse multicellular organisms. Inactivation of the Hippo pathway promotes nuclear localization of the transcriptional coactivator Yap1, a Hippo pathway effector, and can cause cancer. Here, we show that deletion of αE (α epithelial) catenin in the hair follicle stem cell compartment resulted in the development of skin squamous cell carcinoma in mice.
View Article and Find Full Text PDFPolycomb protein group (PcG)-dependent trimethylation on H3K27 (H3K27me3) regulates identity of embryonic stem cells (ESCs). How H3K27me3 governs adult SCs and tissue development is unclear. Here, we conditionally target H3K27 methyltransferases Ezh2 and Ezh1 to address their roles in mouse skin homeostasis.
View Article and Find Full Text PDFDeregulated c-Myc is associated with a wide range of human cancers. In many cell types, overexpression of c-Myc potently promotes cell growth and proliferation concomitant with the induction of apoptosis. Secondary genetic events that shift this balance either by increasing growth and proliferation or limiting apoptosis are likely to cooperate with c-Myc in tumorigenesis.
View Article and Find Full Text PDFAlpha-epithelial catenin (E-catenin) is an important cell-cell adhesion protein. In this study, we show that alpha-E-catenin also regulates intracellular traffic by binding to the dynactin complex component dynamitin. Dynactin-mediated organelle trafficking is increased in alpha-E-catenin(-/-) keratinocytes, an effect that is reversed by expression of exogenous alpha-E-catenin.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2008
beta-Catenin is a crucial mediator of the canonical Wnt-signaling pathway. alpha-catenin is a major beta-catenin-binding protein, and overexpressed alpha-catenin can negatively regulate beta-catenin activity. Thus, alpha-catenin may be an important modulator of the Wnt pathway.
View Article and Find Full Text PDFCadherin-catenin adhesion is pivotal for the development of multicellular organisms. Features such as a large repertoire of homotypically interacting cadherins, rapid assembly and disassembly, and a connection to a force-generating actin cytoskeleton make cadherin-mediated junctions ideal structures for the execution of complex changes in cell and tissue morphology during development. Recent findings highlight the role of cadherin-catenin proteins as critical regulators of major developmental pathways.
View Article and Find Full Text PDFDuring development, cells monitor and adjust their rates of accumulation to produce organs of predetermined size. We show here that central nervous system-specific deletion of the essential adherens junction gene, alphaE-catenin, causes abnormal activation of the hedgehog pathway, resulting in shortening of the cell cycle, decreased apoptosis, and cortical hyperplasia. We propose that alphaE-catenin connects cell-density-dependent adherens junctions with the developmental hedgehog pathway and that this connection may provide a negative feedback loop controlling the size of developing cerebral cortex.
View Article and Find Full Text PDF