Objectives: Because administration of 17beta-estradiol following trauma-hemorrhage improves cardiovascular responses, we investigated whether the salutary effects of 17beta-estradiol on cardiac function are mediated via Akt-dependent heme oxygenase-1 up-regulation under those conditions.
Design: Experimental animal study.
Setting: University laboratory.
Background: Extracellular signal-regulated protein kinase (ERK) is known to be involved in pro-inflammatory and chemotactic events in response to injury. The aim of this study is to elucidate whether ERK plays any role in 17beta-estradiol (E2)-mediated attenuation of lung injury and pro-inflammatory mediators after trauma-hemorrhage.
Methods: Male Sprague-Dawley rats underwent trauma-hemorrhage (mean blood pressure approximately 40 mm Hg for 90 min) followed by fluid resuscitation.
Although MIP-1alpha is an important chemokine in the recruitment of inflammatory cells, it remains unknown whether MIP-1alpha plays any role in the development of systemic inflammatory response following trauma-hemorrhage (T-H). C57BL/6J wild type (WT) and MIP-1alpha-deficient (KO) mice were used either as control, subjected to sham operation (cannulation or laparotomy only or cannulation plus laparotomy) or T-H (midline laparotomy, mean blood pressure 35 +/- 5 mmHg for 90 min, followed by resuscitation) and sacrificed 2 h thereafter. A marked increase in serum alpha-glutathione transferase, TNF-alpha, IL-6, IL-10, MCP-1, and MIP-1alpha and Kupffer cell cytokine production was observed in WT T-H mice compared with shams or control.
View Article and Find Full Text PDFObjective: In this study, we tested the hypothesis that 17beta-estradiol (E2) administration after trauma-hemorrhage reduces lung injury through a mechanism involving estrogen receptor (ER)-dependent activation of the endothelial nitric oxide (NO) synthase (eNOS)/protein kinase G (PKG)/vasodilator-stimulated phosphoprotein (VASP) pathway.
Background: Estrogen provides protection after injury via activation of multiple signaling cascades, including the cyclic GMP-dependent PKG pathway. Phosphorylation of VASP at Ser239 (p-VASP) can be used to assess PKG signaling activity.
Although trauma-hemorrhage produces tissue hypoxia, systemic inflammatory response and organ dysfunction, the mechanisms responsible for these alterations are not clear. Using a potent selective inducible nitric oxide (NO) synthase inhibitor, N-[3-(aminomethyl) benzyl]acetamidine (1400W), and a nonselective NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME), we investigated whether inducible NO synthase plays any role in producing hepatic injury, inflammation, and changes of protein expression following trauma-hemorrhage. To investigate this, male Sprague-Dawley rats were subjected to midline laparotomy and hemorrhagic shock (mean blood pressure 35-40 mmHg for approximately 90 min) followed by fluid resuscitation.
View Article and Find Full Text PDFAlthough studies have shown that administration of testosterone receptor antagonist, flutamide, following trauma-hemorrhage, improves hepatic, cardiovascular, and immune functions, the precise cellular/molecular mechanisms responsible for producing these salutary effects remain largely unknown. To study this, male C3H/HeN mice were subjected to a midline laparotomy and hemorrhagic shock (35+/-5 mmHg for approximately 90 min), followed by resuscitation with Ringer lactate. Flutamide (25 mg/kg) or vehicle was administered subcutaneously at the onset of resuscitation, and animals were killed 2 h thereafter.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
June 2008
p38 MAPK has been reported to regulate the inflammatory response in various cell types via extracellular stimuli. p38 MAPK activation also results in the induction of heme oxygenase (HO)-1, which exerts potent anti-inflammatory effects. Although studies have shown that 17beta-estradiol (E(2)) prevented organ dysfunction following trauma-hemorrhage, it remains unknown whether p38 MAPK/HO-1 plays any role in E(2)-mediated attenuation of intestinal injury under those conditions.
View Article and Find Full Text PDFStudies have shown that p38 MAPK and nitric oxide (NO), generated by endothelial NO synthase (eNOS), play key roles under physiological and pathophysiological conditions. Although administration of 17beta-estradiol (E2) protects cardiovascular injury from trauma-hemorrhage, the mechanism by which E2 produces those effects remains unknown. Our objective was to determine whether the E2-mediated activation of myocardial p38 MAPK and subsequent eNOS expression/phosphorylation would protect the heart following trauma-hemorrhage.
View Article and Find Full Text PDFAlthough 17beta-estradiol (estrogen) and estrogen receptor (ER) agonist administration after trauma-hemorrhage improves cardiac function, it remains unknown what the optimal estrogen or ER agonist dosage is to elicit this beneficial effect. To study this, the dose-dependent effects of estrogen, propylpyrazole triol (ER-alpha agonist), and diarylpropionitrile (DPN; ER-beta agonist) on heart performance (+dP/dt) were determined in sham rats and in experimental animals at the time of maximal bleedout (MBO) or at 2 h after trauma-hemorrhage. The results showed that estrogen and DPN induced dose-dependent increases in the maximal rate of left ventricular pressure increase (+dP/dt) in all groups, whereas propylpyrazole triol was ineffective at all doses.
View Article and Find Full Text PDFBoth p38 mitogen-activated protein kinase (p38) activation and protein kinase B (Akt) activation have been reported to regulate glucose transport during myocardial I/R. An increase in cardiac glycogen levels prevents myocardial injury in the ischemic or stressed heart. Although studies have shown that 17"-estradiol (E2)-mediated improvement in cardiac function after trauma-hemorrhage is via p38 activation, it remains unknown whether p38/Akt plays any role in regulation of cardiac glycogen levels under these conditions.
View Article and Find Full Text PDFProtein kinase B (Akt) is known to be involved in proinflammatory and chemotactic events in response to injury. Akt activation also leads to the induction of heme oxygenase (HO)-1. Up-regulation of HO-1 mediates potent, anti-inflammatory effects and attenuates organ injury.
View Article and Find Full Text PDFp38 mitogen-activated protein kinase (MAPK) activates a number of heat shock proteins (HSPs), including HSP27 and alpha(B)-crystallin, in response to stress. Activation of HSP27 or alpha(B)-crystallin is known to protect organs/cells by increasing the stability of actin microfilaments. Although our previous studies showed that 17beta-estradiol (E(2)) improves cardiovascular function after trauma-hemorrhage, whether the salutary effects of E(2) under those conditions are mediated via p38 MAPK remains unknown.
View Article and Find Full Text PDFObjective: To study the transcriptional regulation of inducible nitric oxide synthase (iNOS) gene by p38 mitogen-activated protein kinase (MAPK).
Methods: With human embryonic kidney (HEK) 293 cells as the target and the assistance of lipofectamine-mediated co-transfection techniques and luciferase reporter gene systems, FLAG-tagged p38 isoforms (namely FLAG-p38 alpha, FLAG-p38 beta;, FLAG-p38 gamma and FLAG-p38 phi;) in pcDNA3, pcDNA3, piNOS-Luc and pCMV-beta; were transfected into HEK 293 cells, and the relative activity of luciferase was subsequently tested.
Results: Highest luciferase activity occurred only in p38 alpha group compared with the other three isoform groups under no stimulation.
Objective: To understand the role of p38 mitogen-activated protein kinase (p38MAPK) in the expression of inducible nitric oxide synthase (iNOS) and NO production in human endothelial cells under the stimulation by lipopolysaccharide (LPS).
Methods: NO level in the supernatant of the cell culture media was measured with Griess method, and iNOS protein and mRNA expressions by the cells were detected with immunofluorescence analysis and reverse transcriptase-polymerase chain reaction (RT-PCR) respectively. Immunoprecipitation assay was employed to examine p38 MAPK activity.
To investigate and compare the expression of intercellular adhesion molecule-1 (ICAM-1) in different organs of the mice with endotoxic shock induced by lipopolysaccharide (LPS), protein and mRNA of ICAM-1 were measured by Western blotting and RT-PCR respectively in different organs of BALB/c mice administered intraperitoneally with 5 mg/kg LPS. The results showed that the constitutive expression of ICAM-1 protein and mRNA was the greatest in the lungs, followed by the spleen, kidney and intestine. After LPS stimulation, the upregulation of ICAM-1 was still greatest in the lungs, followed by the liver, spleen, heart, kidney and intestine.
View Article and Find Full Text PDF