Publications by authors named "Wen-Fei Sun"

Article Synopsis
  • During cryopreservation, many boar sperm cells experience apoptosis due to cold-induced damage, reducing their fertility potential.
  • Researchers added varying concentrations of sulforaphane (SFN), a natural antioxidant from cruciferous vegetables, to the freezing extender and found that 5 μM SFN significantly enhanced sperm motility and integrity after thawing.
  • SFN works by activating specific cellular pathways that boost antioxidant defenses, effectively reducing sperm apoptosis and improving fertilization ability post-thawing, suggesting a new strategy to improve sperm preservation methods.
View Article and Find Full Text PDF

Current cancer vaccines using T cell epitopes activate antitumor T cell immunity through dendritic cell/macrophage-mediated antigen presentation, but they lack the ability to promote B/CD4 T cell crosstalk, limiting their anticancer efficacy. We developed antigen-clustered nanovaccine (ACNVax) to achieve long-term tumor remission by promoting B/CD4 T cell crosstalk. The topographic features of ACNVax were achieved using an iron nanoparticle core attached with an optimal number of gold nanoparticles, where the clusters of HER2 B/CD4 T cell epitopes were conjugated on the gold surface with an optimal intercluster distance of 5-10 nm.

View Article and Find Full Text PDF

The results of artificial insemination (AI) are adversely affected by changes in sperm motility and function throughout the cryopreservation procedure. The proteome alterations of frozen-thawed spermatozoa with various levels of freezability in dairy goats, however, remain largely unknown. To discover differentially expressed proteins (DEPs) and their roles in dairy goat sperm with high or low freezability (HF or LF), we conducted 4D-DIA quantitative proteomics analysis, the results of which are presented in this work.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers combined an albumin nanoparticle (Nano-PI) that carries immunomodulators with α-PD1 therapy to target the tumor's immunosuppressive environment, focusing on both lymph nodes and tumors.
  • In mouse models of breast cancer, this combination not only led to long-term tumor remission and eliminated lung metastases but also successfully repolarized M2 macrophages to M1, enhancing immune response.
  • The study indicates that Nano-PI enhances drug delivery and immune cell activity, suggesting its potential as a promising approach for future clinical trials in treating metastatic breast cancer.
View Article and Find Full Text PDF

Metastasis is the primary cause of cancer mortality, and cancer frequently metastasizes to the liver. It is not clear whether liver immune tolerance mechanisms contribute to cancer outcomes. We report that liver metastases diminish immunotherapy efficacy systemically in patients and preclinical models.

View Article and Find Full Text PDF

: Early screening for colorectal cancer (CRC) is essential to improve its prognosis. Liquid biopsies are increasingly being considered for diagnosing cancer due to low invasiveness and high reproducibility. In addition, circulating extracellular vesicles (crEVs, extracellular vesicles isolated from plasma) expressing tumour-specific proteins are potential biomarkers for various cancers.

View Article and Find Full Text PDF

Arabinoxylan is a heteropolymeric chain of a β-1,4-linked xylose backbone substituted with arabinose residues, representing a principal component of plant cell walls. Here we developed recombinant Saccharomyces cerevisiae strains as whole-cell biocatalysts capable of combining hemicellulase production, xylan hydrolysis, and hydrolysate fermentation into a single step. These strains displayed a series of uni-, bi-, and trifunctional minihemicellulosomes that consisted of a miniscaffoldin (CipA3/CipA1) and up to three chimeric enzymes.

View Article and Find Full Text PDF

Saccharomyces cerevisiae is an important platform organism for synthesis of chemicals and fuels. However, the promoters used in most pathway engineering studies in S. cerevisiae have not been characterized and compared in parallel under multiple conditions that are routinely operated in laboratory and the number of known promoters is rather limited for the construction of large biochemical pathways.

View Article and Find Full Text PDF

By combining cellulase production, cellulose hydrolysis, and sugar fermentation into a single step, consolidated bioprocessing (CBP) represents a promising technology for biofuel production. Here we report engineering of Saccharomyces cerevisiae strains displaying a series of uni-, bi-, and trifunctional minicellulosomes. These minicellulosomes consist of (i) a miniscaffoldin containing a cellulose-binding domain and three cohesin modules, which was tethered to the cell surface through the yeast a-agglutinin adhesion receptor, and (ii) up to three types of cellulases, an endoglucanase, a cellobiohydrolase, and a beta-glucosidase, each bearing a C-terminal dockerin.

View Article and Find Full Text PDF

Homing endonucleases recognize specific long DNA sequences and catalyze double-stranded breaks that significantly stimulate homologous recombination, representing an attractive tool for genome targeting and editing. We previously described a two-plasmid selection system that couples enzymatic DNA cleavage with the survival of host cells, and enables directed evolution of homing endonucleases with altered cleavage sequence specificity. Using this selection system, we successfully evolved mutant I-SceI homing endonucleases with greatly increased cleavage activity towards a new target DNA sequence that differs from the wild-type cleavage sequence by 4 bp.

View Article and Find Full Text PDF