Metallo-β-lactamase (MBL)-producing carbapenem-resistant Enterobacterales (CRE) pose an emerging threat to public health worldwide. An effective inhibitor of MBLs is therefore urgently needed for clinical use. In this study, two acyclic pyridine-containing ligands, Hdedpa and compound 8, were discovered with excellent activities when combined with meropenem (MEM) against MBL (bla and bla)-producing clinical isolates, including Escherichia coli, Citrobacter freundii, Proteus mirabilis, Enterobacter cloacae and Klebsiella pneumoniae.
View Article and Find Full Text PDFThe activity of β-lactam antibiotics is compromised by metallo-β-lactamases (MBLs). Herein, a series of dithiocarbamate derivatives were designed and synthesized. Their antibacterial activities were tested in combination with meropenem (MEM) against several MBL (NDM and IMP type)-producing clinical isolates.
View Article and Find Full Text PDFBacterial infections cause various life-threatening diseases and have become a serious public health problem due to the emergence of drug-resistant strains. Thus, novel antibiotics with excellent antibacterial activity and low cytotoxicity are urgently needed. Here, three series of novel cationic deacetyl linezolid amphiphiles bearing one lipophilic alkyl chain and one non-peptidic amide bond were synthesized and tested for antimicrobial activities.
View Article and Find Full Text PDFThere is an urgent need to identify new antibiotics with novel mechanisms that combat antibiotic resistant bacteria. Herein, a series of chalcone derivatives that mimic the essential properties of cationic antimicrobial peptides were designed and synthesized. Antibacterial activities against drug-sensitive bacteria, including Staphylococcus aureus, Enterococcus faecalis, Escherichia coli and Salmonella enterica, as well as clinical multiple drug resistant isolates of methicillin-resistant S.
View Article and Find Full Text PDFThe emergence of infectious diseases caused by pathogenic bacteria is widespread. Therefore, it is urgently required to enhance the development of novel antimicrobial agents with high antibacterial activity and low cytotoxicity. A series of novel dialkyl cationic amphiphiles bearing two identical length lipophilic alkyl chains and one non-peptidic amide bond were synthesized and tested for antimicrobial activities against both Gram-positive and Gram-negative bacteria.
View Article and Find Full Text PDF