Publications by authors named "Wen-Cai Ren"

Article Synopsis
  • Hot-carrier transistors utilize the excess energy of carriers for improved speed and performance, unlike traditional transistors which depend on steady energy levels.
  • They are particularly valuable in high-speed applications like telecommunications and advanced computing but face limitations in power consumption and resistance.
  • This study introduces a new hot-emitter transistor using graphene/germanium junctions that achieves remarkable efficiency and functionality, including a very low subthreshold swing and high inverter gain, indicating potential for future low-power technologies.
View Article and Find Full Text PDF

Carbon nanotube (CNT) thin-film transistors are expected to be promising for use in flexible electronics including flexible and transparent integrated circuits and in wearable chemical and physical sensors and for driving the circuits of flexible display panels. However, current devices based on CNT channels suffer from poor performance uniformity and low manufacturing yield; therefore, they are still far from being practical. This is usually caused by nonuniform deposition of the semiconducting CNTs and the rough surface of flexible substrates.

View Article and Find Full Text PDF

Graphene has great potential for enhancing light-matter interactions in a two-dimensional regime due to surface plasmons with low loss and strong light confinement. Further utilization of graphene in nanophotonics relies on the precise control of light localization properties. Here, we demonstrate the tailoring of electromagnetic field localizations in the mid-infrared region by precisely shaping the graphene into nanostructures with different geometries.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) and graphene have attracted great attention for numerous applications for future flexible electronics, owing to their supreme properties including exceptionally high electronic conductivity and mechanical strength. Here, the progress of CNT- and graphene-based flexible thin-film transistors from material preparation, device fabrication techniques to transistor performance control is reviewed. State-of-the-art fabrication techniques of thin-film transistors are divided into three categories: solid-phase, liquid-phase, and gas-phase techniques, and possible scale-up approaches to achieve realistic production of flexible nanocarbon-based transistors are discussed.

View Article and Find Full Text PDF