Publications by authors named "Wen T Qin"

As a newly-identified protein post-translational modification, malonylation is involved in a variety of biological functions. Recognizing malonylation sites in substrates represents an initial but crucial step in elucidating the molecular mechanisms underlying protein malonylation. In this study, we constructed a deep learning (DL) network classifier based on long short-term memory (LSTM) with word embedding (LSTM) for the prediction of mammalian malonylation sites.

View Article and Find Full Text PDF

Src homology 2 (SH2) domains play an essential role in cellular signal transduction by binding to proteins phosphorylated on Tyr residue. Although Tyr phosphorylation (pY) is a prerequisite for binding for essentially all SH2 domains characterized to date, different SH2 domains prefer specific sequence motifs C-terminal to the pY residue. Because all SH2 domains adopt the same structural fold, it is not well understood how different SH2 domains have acquired the ability to recognize distinct sequence motifs.

View Article and Find Full Text PDF

Early region 1A (E1A) is the first viral protein produced upon human adenovirus (HAdV) infection. This multifunctional protein transcriptionally activates other HAdV early genes and reprograms gene expression in host cells to support productive infection. E1A functions by interacting with key cellular regulatory proteins through short linear motifs (SLiMs).

View Article and Find Full Text PDF

In this present study, two soybean cultivars with different drought tolerance in serial number of JP-6 (high drought-tolerant species) and JP-16 (low drought-tolerant species) were researched. The HPLC and real-time PCR analyses were used to determine the isoflavone contents and relative expression levels of key genes, which encoded isoflavone synthesis relative enzymes in lea-ves and roots under different drought stress levels, respectively. The results indicated that the isoflavone contents in roots were significantly higher than that in leaves, whereas the relative expression of isoflavone synthetic enzyme related genes in leaves was significantly higher than that in roots.

View Article and Find Full Text PDF