The production of high-purity hydrogen using surplus electrical energy and abundant water resources has immense potential in mitigating the fossil energy crisis, as hydrogen fuel holds clean, pollution-free, and high-energy characteristics. However, the practical application of large-scale hydrogen production from water faces challenges such as high overpotentials, sluggish dynamics, and limited electrocatalytic lifetime associated with the hydrogen evolution reaction (HER). Here, we fabricated the sandwich structure of a Ni/FeO@poly(3,4-ethylene-dioxythiophene)/Ni (Ni/FeO@PEDOT/Ni) electrode and employed a strong magnet to obtain a magnetic electrode capable of achieving high-activity and durability for HER.
View Article and Find Full Text PDFPurpose: Up to now, the indications of inferior vena cava filter placement still remain controversial in the academic field. The aim of this study was to determine the risk factors of detachment of thrombus and to evaluate the necessity of inferior vena cava filter placement to prevent fatal pulmonary embolism.
Materials And Methods: A total of 2892 patients participated in the multicenter prospective observational study from January 1, 2018, to December 31, 2018, and underwent retrievable inferior vena cava filter (RIVCF) placement in 103 centers in China.
Background: Litter size is an important factor that significantly affects the development of the sheep industry. Our previous TMT proteomics analysis found that three key proteins in the ovarian steroidogenesis pathway, STAR, HSD3B1, and CYP11A1, may affect the litter size trait of Small Tail Han sheep.
Objective: The purpose of this study was to better understand the relationship between polymorphisms of these three genes and litter size.
Background: Many recent studies have shown that miRNAs play important roles in the regulation of animal reproduction, including seasonal reproduction. The pineal gland is a crucial hub in the regulation of seasonal reproduction. However, little is known about the expression characteristics of pineal miRNAs in different reproductive seasons (anestrus and breeding season).
View Article and Find Full Text PDFSingle-cell whole genome amplification (WGA) is a new technology, which can amplify small amounts of DNA from single cell and obtain the high coverage whole genome DNA template for revealing cell heterogeneity. Single cell WGA methods mainly include primer extension preamplification PCR (PEP-PCR), degenerate oligonucleotide primed PCR (DOP-PCR), multiple displacement amplification (MDA), and multiple annealing and looping-based amplification cycles (MALBAC). In this review, we describe the principles and applications of different single cell genome wide amplification, and we evaluate and compare their amplification efficiency, including the coverage of genome, homogeneity, reproducibility, and detection power of single-nucleotide variants (SNV) and copy number variants (CNV).
View Article and Find Full Text PDFSeasonal breeding is an important factor limiting sheep production efficiency. Detailed analysis on the molecular mechanisms of seasonal breeding is the premise for improving estrus and mating rate of sheep during anestrus. Recent research showed that under long-photoperiod and short-photoperiod conditions, a series of changes in signaling molecules and cell morphology could be observed in ovine seasonal reproduction pathway.
View Article and Find Full Text PDFBackground: Alpha 1-antitrypsin (α1-AT) may affect the susceptibility of mastitis in dairy cattle for its possible role in the protection of lactoferrin from proteolytic degradation in the mammary. Milk somatic cell score (SCS) is a logarithmic transformation of the milk somatic cell count widely used as an index to evaluate mastitis. To study the relationships of - gene and SCS in Chinese Holstein cows, methods of PCR-SSCP, DNA sequencing, PCR-RFLP, and CRS-PCR technologies were used to detect single nucleotide polymorphisms sites in - gene.
View Article and Find Full Text PDFDomesticated animals play an important role in the life of humanity. All these domesticated animals undergo same process, first domesticated from wild animals, then after long time natural and artificial selection, formed various breeds that adapted to the local environment and human needs. In this process, domestication, natural and artificial selection will leave the selection signal in the genome.
View Article and Find Full Text PDFBlack phosphorus, a fast emerging two-dimensional material, has been configured as field effect transistors, showing a hole-transport-dominated ambipolar characteristic. Here we report an effective modulation on ambipolar characteristics of few-layer black phosphorus transistors through in situ surface functionalization with caesium carbonate (Cs2CO3) and molybdenum trioxide (MoO3), respectively. Cs2CO3 is found to strongly electron dope black phosphorus.
View Article and Find Full Text PDFThe concept of using single molecules as key building blocks for logic gates, diodes and transistors to perform basic functions of digital electronic devices at the molecular scale has been explored over the past decades. However, in addition to mimicking the basic functions of current silicon devices, molecules often possess unique properties that have no parallel in conventional materials and promise new hybrid devices with novel functions that cannot be achieved with equivalent solid-state devices. The most appealing example is the molecular switch.
View Article and Find Full Text PDFThe construction of long-range ordered organic donor-acceptor nanostructure arrays over microscopic areas supported on solid substrates is one of the most challenging tasks towards the realization of molecular nanodevices. They can also be used as ideal model systems to understand light induced charge transfer, charge separation and energy conversion processes and mechanisms at the nanometer scale. The aim of this paper is to highlight recent advances and progress in this topic.
View Article and Find Full Text PDFHybrid materials made from all inorganic components are intriguing in many fields, because they have shown in-depth potential use for electronic and optoelectronic applications including solar cells, gas sensors, photodetectors, and field effect transistors. Hybrid materials made from SnO₂ nanoparticles on SnSe nanosheets have been synthesized via a facile, lost-cost and safe solution method, and have been demonstrated as promising multifunctional materials in various prototype devices, including gas sensors, photodetectors, and field effect transistors.
View Article and Find Full Text PDFIn the swine industry pathogenic infections have a significant negative impact on neonatal survival. Piglets fed with human lysozyme, a natural antibiotic, might be more resistant to gastrointestinal infections. Here we describe the generation of transgenic swine expressing recombinant human lysozyme by somatic cell nuclear transfer.
View Article and Find Full Text PDFA simple method was introduced to synthesize nanomaterials of a new metal selenide, InSe nanowires (NWs). The NWs had diameters ranging from 60 to 250 nm and lengths from several micrometers to tens of micrometers. The photoresponse characteristics of InSe NWs were investigated by fabricating devices based on an individual NW.
View Article and Find Full Text PDF