Publications by authors named "Wen Hui Shen"

Shade avoidance helps plants maximize their access to light for growth under crowding. It is unknown, however, whether a priming shade avoidance mechanism exists that allows plants to respond more effectively to successive shade conditions. Here, we show that the shade-intolerant plant Arabidopsis can remember a first experienced shade event and respond more efficiently to the next event on hypocotyl elongation.

View Article and Find Full Text PDF

Analyzing the pattern of altitudinal variation in the leaf traits and their networks of a particular tree species of similar age and its influencing factors could contribute to understanding the impacts of environmental factors on leaf traits and excluding the interference of genetic factors. We investigated the stomatal, structural, chemical, and vein traits of leaves in middle-aged forests, following the altitudinal gradient (1100, 1500, and 1900 m) on Mao'er Mountain. The objectives of this study were to reveal patterns in leaf trait and leaf trait networks variation, the life strategy of the tree species, and the major environmental factors affecting the altitudinal variations.

View Article and Find Full Text PDF

Warm ambient conditions induce thermomorphogenesis and affect plant growth and development. However, the chromatin regulatory mechanisms involved in thermomorphogenesis remain largely obscure. In this study, we show that the histone methylation readers MORF-related gene 1 and 2 (MRG1/2) are required to promote hypocotyl elongation in response to warm ambient conditions.

View Article and Find Full Text PDF

The histone variant H2A.Z plays key functions in transcription and genome stability in all eukaryotes ranging from yeast to human, but the molecular mechanisms by which H2A.Z is incorporated into chromatin remain largely obscure.

View Article and Find Full Text PDF
Article Synopsis
  • Shade-intolerant plants experience shade avoidance syndrome (SAS) due to light quality changes from nearby plants, leading to negative effects on health and crop yield.
  • Phytochrome-interacting factor 7 (PIF7) is a key player in regulating SAS through gene expression, but its specific mechanisms were not fully understood until now.
  • Research shows PIF7 interacts with the histone chaperone anti-silencing factor 1 (ASF1) and involves Histone regulator homolog A (HIRA), facilitating H3.3 enrichment in chromatin and promoting the expression of target genes that help plants adapt to shade.
View Article and Find Full Text PDF

As sessile organisms, plants are constantly exposed to changing environments frequently under diverse stresses. Invasion by pathogens, including virus, bacterial and fungal infections, can severely impede plant growth and development, causing important yield loss and thus challenging food/feed security worldwide. During evolution, plants have adapted complex systems, including coordinated global gene expression networks, to defend against pathogen attacks.

View Article and Find Full Text PDF
Article Synopsis
  • METTL4 is a methyltransferase in Arabidopsis that mediates the methylation of RNA and DNA, specifically functioning as a U2 snRNA MTase for N-2'-O-dimethyladenosine (mAm) which affects flowering time.
  • The study reveals that METTL4 catalyzes the N-methylation of 2'-O-methyladenosine (Am) in vitro, using structural insights that show its unique binding cavity and catalytic center crucial for substrate interaction.
  • Comparisons with other methyltransferases suggest that METTL4 shares a similar catalytic mechanism with the mRNA m6A enzyme complex (METTL3/METTL14), highlighting a potential commonality among
View Article and Find Full Text PDF

MYB and basic helix-loop-helix (bHLH) transcription factors form complexes to regulate diverse metabolic and developmental processes in plants. However, the molecular mechanisms responsible for MYB-bHLH interaction and partner selection remain unclear. Here, we report the crystal structures of three MYB-bHLH complexes (WER-EGL3, CPC-EGL3 and MYB29-MYC3), uncovering two MYB-bHLH interaction modes.

View Article and Find Full Text PDF

Chromatin remodelers act in an ATP-dependent manner to modulate chromatin structure and thus genome function. Here, we report that the Arabidopsis (Arabidopsis thaliana) remodeler CHROMATIN REMODELING19 (CHR19) is enriched in gene body regions, and its depletion causes massive changes in nucleosome position and occupancy in the genome. Consistent with these changes, an in vitro assay verified that CHR19 can utilize ATP to slide nucleosomes.

View Article and Find Full Text PDF

Background: Ewing sarcoma (ES) of bone is accounting for the second most common type of primary bone cancer in children and adolescents. However, the patterns of distant metastasis (DM) and the effect of the sites of DM on survival outcomes were not investigated.

Aims: This study aimed to investigate the patterns of DM and the prognostic factors related to outcomes in primary metastatic ES of the bone.

View Article and Find Full Text PDF

Chromatin modifications play important roles in plant adaptation to abiotic stresses, but the precise function of histone H3 lysine 36 (H3K36) methylation in drought tolerance remains poorly evaluated. Here, we report that SDG708, a specific H3K36 methyltransferase, functions as a positive regulator of drought tolerance in rice. SDG708 promoted abscisic acid (ABA) biosynthesis by directly targeting and activating the crucial ABA biosynthesis genes NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (OsNCED3) and NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 5 (OsNCED5).

View Article and Find Full Text PDF

Photomorphogenesis is a critical developmental process bridging light-regulated transcriptional reprogramming with morphological changes in organisms. Strikingly, the chromatin-based transcriptional control of photomorphogenesis remains poorly understood. Here, we show that the () ortholog of ATP-dependent chromatin-remodeling factor AtINO80 represses plant photomorphogenesis.

View Article and Find Full Text PDF

Nucleosome Assembly Protein 1 (NAP1) family proteins are evolutionarily conserved histone chaperones that play important roles in diverse biological processes. In this study, we determined the crystal structure of NAP1-Related Protein 1 (NRP1) complexed with H2A-H2B and uncovered a previously unknown interaction mechanism in histone chaperoning. Both in vitro binding and in vivo plant rescue assays proved that interaction mediated by the N-terminal α-helix (αN) domain is essential for NRP1 function.

View Article and Find Full Text PDF

While the yeast Chz1 acts as a specific histone-chaperone for H2A.Z, functions of CHZ-domain proteins in multicellular eukaryotes remain obscure. Here, we report on the functional characterization of OsChz1, a sole CHZ-domain protein identified in rice.

View Article and Find Full Text PDF

Histones are highly basic proteins involved in packaging DNA into chromatin, and histone modifications are fundamental in epigenetic regulation in eukaryotes. Among the numerous chromatin modifiers identified in Arabidopsis (Arabidopsis thaliana), MORF-RELATED GENE (MRG)1 and MRG2 have redundant functions in reading histone H3 lysine 36 trimethylation (H3K36me3). Here, we show that MRG2 binds histone chaperones belonging to the NUCLEOSOME ASSEMBLY PROTEIN 1 (NAP1) family, including NAP1-RELATED PROTEIN (NRP)1 and NRP2.

View Article and Find Full Text PDF

Day-length changes represent an important cue for modulating flowering time. In Arabidopsis, the expression of the florigen gene FLOWERING LOCUS T (FT) exhibits a 24-h circadian rhythm under long-day (LD) conditions. Here we focus on the chromatin-based mechanism regarding the control of FT expression.

View Article and Find Full Text PDF

Post-translational covalent modifications of histones play important roles in modulating chromatin structure and are involved in the control of multiple developmental processes in plants. Here we provide insight into the contribution of the histone lysine methyltransferase SET DOMAIN GROUP 8 (SDG8), implicated in histone H3 lysine 36 trimethylation (H3K36me3), in connection with RNA polymerase II (RNAPII) to enhance immunity. We showed that even if the loss-of-function mutant, defective in H3K36 methylation, displayed a higher sensitivity to different strains of the bacterial pathogen , effector-triggered immunity (ETI) still operated, but less efficiently than in the wild-type (WT) plants.

View Article and Find Full Text PDF

The H2A/UBIQUITIN-binding proteins AtZRF1a/b have been reported as key regulators involved in multiple processes of plant growth and development. Yet, the cellular and molecular mechanisms underlying the mutant phenotype remain largely elusive. Here we show that loss-of-function of causes defective root elongation and deformed root apical meristem organization in seedlings.

View Article and Find Full Text PDF

Three typical plant communities (evergreen broad-leaved forest at low-altitude 1100 m, evergreen and deciduous mixed broad-leaved forest at mid-altitude 1500 m, and evergreen conife-rous and broad-leaved mixed forest at high-altitude 1900 m) in Maoer Mountain, Guangxi, China were surveyed along an altitude gradient. We measured the tree layer plant architecture and environmental factors, to analyze the variation of plant architecture traits among the three communities and its influencing factors. The results showed that the tree layer canopy area, basal diameter at 45 cm height, diameter at breast height (DBH), and leaf convergence increased with increasing altitude, whereas tree height, branch height, and canopy thickness first increased and then decreased.

View Article and Find Full Text PDF

The different genome-wide distributions of tri-methylation at H3K36 (H3K36me3) in various species suggest diverse mechanisms for H3K36me3 establishment during evolution. Here, we show that the transcription factor OsSUF4 recognizes a specific 7-bp DNA element, broadly distributes throughout the rice genome, and recruits the H3K36 methyltransferase SDG725 to target a set of genes including the key florigen genes RFT1 and Hd3a to promote flowering in rice. Biochemical and structural analyses indicate that several positive residues within the zinc finger domain are vital for OsSUF4 function in planta.

View Article and Find Full Text PDF

Background: In animals, H3K4me2 and H3K4me3 are enriched at the transcription start site (TSS) and function as epigenetic marks that regulate gene transcription, but their functions in plants have not been fully characterized.

Results: We used chromatin immunoprecipitation sequencing to analyze the rice genome-wide changes to H3K4me1/H3K4me2/H3K4me3 following the loss of an H3K4-specific methyltransferase, SDG701. The knockdown of SDG701 resulted in a global decrease in H3K4me2/H3K4me3 levels throughout the rice genome.

View Article and Find Full Text PDF

Background: Polycomb group (PcG) proteins play important roles in animal and plant development and stress response. Polycomb repressive complex 1 (PRC1) and PRC2 are the key epigenetic regulators of gene expression, and are involved in almost all developmental stages. PRC1 catalyzes H2A monoubiquitination resulting in transcriptional silencing or activation.

View Article and Find Full Text PDF

The proper modulation of chromatin structure is dependent on the activities of chromatin-remodeling factors and their interplays. Here, we show that the Arabidopsis chromatin-remodeler AtINO80 interacts with the actin-related protein AtARP5 and can form a larger protein complex. Genetic analysis demonstrated that AtARP5 acts in concert with AtINO80 during plant cellular proliferation and replication stress response.

View Article and Find Full Text PDF

Chromatin structure requires proper modulation in face of transcriptional reprogramming in the context of organism growth and development. Chromatin-remodeling factors and histone chaperones are considered to intrinsically possess abilities to remodel chromatin structure in single or in combination. Our previous study revealed the functional synergy between the Arabidopsis chromatin-remodeling factor INOSITOL AUXOTROPHY 80 (AtINO80) and the histone chaperone NAP1-RELATED PROTEIN 1 (NRP1) and NRP2 in somatic homologous recombination, one crucial pathway involved in repairing DNA double strand breaks.

View Article and Find Full Text PDF

The Arabidopsis thaliana gain-of-function T-DNA insertion mutant jaw-1D produces miR319A, a microRNA that represses genes encoding CIN-like TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTORs (TCPs), a family of transcription factors that play key roles in leaf morphogenesis. In this study, we show that jaw-1D is responsive to paramutation-like epigenetic silencing. A genetic cross of jaw-1D with the polycomb gene mutant curly leaf-29 (clf-29) leads to attenuation of the jaw-1D mutant plant phenotype.

View Article and Find Full Text PDF